
A Policy-Based Vulnerability Analysis Framework

By

SOPHIE JEAN ENGLE
B.S. (University of Nebraska at Omaha) 2002

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Matt Bishop (Chair)

Professor S. Felix Wu

Professor Karl Levitt

Professor Sean Peisert

Committee in Charge

2010

i

Dedicated to my dad, D. H. Engle.

ii

Abstract

Repeatability is essential to any science—computer science is no exception. However, the area

of vulnerability analysis suffers from ambiguous definitions that hinder the repeatability of ana-

lysis results. Many researchers have turned to policy-based definitions of a vulnerability in an

attempt to alleviate this ambiguity. However, it is rare that security policies are explicitly and

precisely defined. As a result, these policy-based approaches merely shift the ambiguity from

defining vulnerabilities to defining policies. Other researchers turn to strictly formal models

and methods to provide repeatable results, but the practicality of such analysis is limited by the

complexity of the environment and the availability of resources. This creates a conflict between

repeatability and practicality that is often left unresolved in existing vulnerability analysis meth-

ods; an analysis framework either focuses on formal models to provide repeatability, or uses an

ad hoc approach to provide practicality.

This dissertation addresses this conflict by balancing specific formal and practical objec-

tives to create a vulnerability analysis framework capable of producing repeatable results in re-

alistic environments. This analysis framework relies on three major components: a hierarchy of

security policies, a formal model of implementation vulnerabilities, and an implementation vul-

nerability classification scheme. We address the ambiguity surrounding security policies with a

hierarchy that precisely defines security policies at four levels of abstraction. We use this policy

hierarchy to provide a formal model of an implementation vulnerability. This model provides the

formal foundation for our characteristic-based vulnerability classification scheme, which allows

us to examine implementation vulnerabilities at a more practical level of abstraction. We com-

bine these components into a cohesive implementation vulnerability analysis framework that

provides insight into both when a system is non-secure, and how to mitigate that non-security.

iii

Acknowledgments

I am grateful for the support of all those that helped me realize this degree. Foremost, I want

to thank my adviser Professor Matt Bishop for his constant support and guidance. He provided

invaluable advice throughout my entire graduate career. I am positive that I would not have

achieved this goal without his help and encouragement. I also want to thank Professor Sean

Peisert for his excellent feedback and advice, and everyone else on my dissertation and qualifying

exam committees for guiding my progress over the years.

I want to also thank all of those that helped me before I became a graduate student. I espe-

cially want to thank Professor Blaine Burnham for his insight and advice. He not only introduced

me to the area of computer security, but also encouraged me to explore graduate school. I want

to thank Professor Ken Dick, whose early support allowed me to gain both valuable industry and

teaching experience as an undergraduate. I am also grateful for the encouragement provided by

Dr. Winnie Callahan. Her drive inspired me to push my own boundaries.

I want to thank my partner in research and in life, Sean Whalen, for the decade of support

he has given me. His support gives me strength even in the toughest of times, and the courage to

tackle the challenges each day brings. I would be lost without him.

I am also grateful for the constant support of my family. I want to thank my sisters Dannielle

and Charlene for always being there for me, even as they work on their own graduate degrees.

I want to thank my mom for her unwavering support and patience, which has helped me more

than she knows.

Finally, I want to thank my dad. He taught me the importance of education, and was the

best teacher (with or without a Ph.D.) that I have ever known. Without him, none of this would

be possible. His legacy continues to inspire me today.

iv

Table of Contents

CHAPTER 1

Introduction

§1.1 Motivation . 1
§1.2 Analysis Scope . 3
§1.3 Objectives . 4
§1.4 Approach. 5
§1.5 Organization . 6

CHAPTER 2

Background

§2.1 Foundations. 8
§2.1.1 Access Control Matrix (ACM) Model . 8
§2.1.2 Harrison-Ruzzo-Ullman (HRU) Model . 9
§2.1.3 Take-Grant Protection Model . 10

§2.2 Prior Work . 11
§2.2.1 Unifying Policy Hierarchy . 11
§2.2.2 Vulnerability Analysis . 12
§2.2.3 Buffer Overflow Characteristics . 13
§2.2.4 Protocol Exploit Classification . 13
§2.2.5 Insider Threat Analysis . 14
§2.2.6 Early Iterations . 14

§2.3 Related Work . 14
§2.3.1 Security Policy . 15
§2.3.2 Theoretical Results . 17
§2.3.3 Vulnerability Classification . 20
§2.3.4 Vulnerability Analysis . 21

§2.4 Terminology. 23
§2.4.1 Security Policy . 23
§2.4.2 Policy Properties . 24
§2.4.3 Turing Machines . 25
§2.4.4 Computability . 26
§2.4.5 Complexity . 27
§2.4.6 Computation Traces . 28
§2.4.7 Set Notation . 29
§2.4.8 Graph Notation . 30

v

CHAPTER 3

Security Policy

§3.1 Introduction. 31

§3.2 Policy-Based Approach . 32
§3.2.1 Levels of Security Policy . 32
§3.2.2 Intention versus Implementation . 33
§3.2.3 Policy as a Partition . 34
§3.2.4 Policy as a Language . 36

§3.3 Terminology . 37
§3.3.1 Policy Events . 37
§3.3.2 Policy Responses . 39
§3.3.3 Policy Statements and Sets . 40
§3.3.4 Policy Properties . 40
§3.3.5 Policy Conditions . 41

CHAPTER 4

Vulnerability Hierarchy

§4.1 Introduction. 44

§4.2 Policy Hierarchy . 44
§4.2.1 Policy Oracle . 45
§4.2.2 Ideal Oracle . 45
§4.2.3 Feasible Oracle . 47
§4.2.4 Configured Oracle . 48
§4.2.5 Instantiated Oracle . 49

§4.3 Vulnerability Hierarchy . 51
§4.3.1 Policy Violations . 51
§4.3.2 Inherent Vulnerabilities . 54
§4.3.3 Configuration Vulnerabilities . 54
§4.3.4 Implementation Vulnerabilities . 55
§4.3.5 Absolute Vulnerabilities . 56

§4.4 Case Study: Insider Threat . 57
§4.4.1 Approach . 58
§4.4.2 Phase 1: Preparation . 59
§4.4.3 Phase 2: Inherent Vulnerability Analysis . 60
§4.4.4 Phase 3: Absolute Vulnerability Analysis . 62

§4.5 Prior Work . 64

§4.6 Summary. 65

vi

CHAPTER 5

Vulnerability Classification

§5.1 Introduction. 67

§5.2 Terminology. 69

§5.2.1 Implementation Vulnerabilities . 69

§5.2.2 Perfect Knowledge Assumption . 70

§5.2.3 Representative System Set . 72

§5.2.4 System Sets . 73

§5.2.5 Universal Sets . 74

§5.3 Characteristic-Based Abstraction . 75

§5.3.1 Characteristics . 75

§5.3.2 Symptoms . 76

§5.3.3 Properties . 77

§5.3.4 Universal Sets . 78

§5.3.5 Basic Sets . 79

§5.3.6 Vulnerabilities . 80

§5.3.7 Buffer Overflow Example . 80

§5.4 Hierarchical Classification. 83

§5.4.1 Classification Components . 84

§5.4.2 Classification Trees . 85

§5.5 Prior Work . 86

§5.6 Summary. 89

CHAPTER 6

Vulnerability Analysis

§6.1 Introduction. 91

§6.2 Analysis Framework . 92

§6.2.1 Phase 1: Preparation . 92

§6.2.2 Phase 2: Analysis . 93

§6.2.3 Phase 3: Mitigation . 94

§6.3 Phase 1: Preparation. 94

§6.3.1 Step 1: Define Global Policy Event Space . 94

§6.3.2 Step 2: Approximate Configured Policy Oracle . 95

§6.3.3 Phase 1 Summary . 95

§6.4 Phase 2: Analysis . 96

§6.4.1 Step 1: Instantiated Oracle Analysis . 97

§6.4.2 Step 2: Characteristic Analysis . 97

§6.4.3 Step 3: Environment Analysis . 98

§6.4.4 Step 4: Vulnerability Analysis . 98

§6.4.5 Phase 2 Summary . 99

vii

§6.5 Phase 3: Mitigation . 99

§6.5.1 Step 1: Characteristic Identification . 99

§6.5.2 Step 2: Characteristic Mitigation . 100

§6.5.3 Step 3: Vulnerability Mitigation . 101

§6.5.4 Phase 3 Summary .101

§6.6 Analysis Example . 102

§6.6.1 Phase 1: Preparation . 102

§6.6.2 Phase 2: Analysis .103

§6.6.3 Phase 3: Mitigation . 104

§6.6.4 Example Summary . 105

§6.7 Summary. .105

CHAPTER 7

Conclusion

§7.1 Summary . 107

§7.2 Contributions . 109

§7.2.1 Vulnerability Hierarchy . 109

§7.2.2 Vulnerability Model .109

§7.2.3 Vulnerability Classification . 110

§7.2.4 Vulnerability Analysis .110

§7.3 Future Work . 110

§7.3.1 Theoretical Directions .111

§7.3.2 Vulnerability Database . 111

§7.3.3 Extended Case Study . 112

APPENDIX A

Vulnerability Model

§A.1 Introduction. .114

§A.2 Terminology . 114

§A.2.1 Computation Trace . 115

§A.2.2 Partial Trace . 117

§A.2.3 Valid Configurations . 118

§A.3 Security Problems . 119

§A.3.1 System Security . 120

§A.3.2 System Non-Security . 122

§A.3.3 Real-Time Security . 122

§A.4 Discussion . 123

§A.5 Summary. .125

viii

APPENDIX B

Discussion

§B.1 Approximating Access Control Matrix Models . 126
§B.1.1 Global Policy Event Space . 126
§B.1.2 Configured Oracle . 128
§B.1.3 Other Access Attributes . 129

§B.2 Basic Set Formalization. .130
§B.2.1 Minimal Set Cover . 130
§B.2.2 Minimal Superset Cover . 132

§B.3 Buffer Overflow Characteristics .133
§B.3.1 Original Characteristics .133
§B.3.2 Revised Characteristics .135

Bibliography . 138

Terminology Index . 146

ix

List of Figures

Figure 1.1 Framework Overview . 6

Figure 2.1 Example Access Control Matrix . 9
Figure 2.2 Take-Grant Graphical Representation . 10
Figure 2.3 Take-Grant Rules . 11
Figure 2.4 Comparison of Hierarchy Terminology . 12
Figure 2.5 Exploit Classification Tree . 13
Figure 2.6 Security Policy Objectives . 15
Figure 2.7 Security Policy Models . 17
Figure 2.8 Tree Terminology and Notation . 30

Figure 4.1 Policy Hierarchy. 47
Figure 4.2 Example Policy Violations and Vulnerabilities . 53
Figure 4.3 Violation and Vulnerability Hierarchy . 57
Figure 4.4 Terminology and Notation . 66

Figure 5.1 Buffer Overflow Classification Tree . 87
Figure 5.2 Buffer Overflow Classification Grammar . 88
Figure 5.3 Terminology and Notation . 90

Figure 6.1 Analysis Framework Overview . 93
Figure 6.2 Phase 2: Analysis . 96
Figure 6.3 Terminology and Notation . 106

Figure 7.1 Terminology Overview . 108
Figure 7.2 General Notation (Alphabetically) . 113

Figure A.1 Diagonalization of VALID (M) . 120
Figure A.2 Decidability Results . 124
Figure A.3 Terminology and Notation . 125

Figure B.1 Buffer Overflow Characteristics . 137

x

List of Numbered Definitions

Definition 3.1 Policy Event . 37
Definition 3.2 Conditional Policy Event . 38
Definition 3.3 Global Policy Event Space . 39
Definition 3.4 Policy Decision . 39
Definition 3.5 Policy Response. 39
Definition 3.6 Policy Statement . 40
Definition 3.7 Policy Conflict . 40
Definition 3.8 Policy Set . 40
Definition 3.9 Precision . 41
Definition 3.10 Completeness . 41
Definition 3.11 Ambiguity . 41
Definition 3.12 Policy Condition . 42
Definition 3.13 Policy Condition Set . 42
Definition 3.14 Security Policy . 42
Definition 3.15 State Condition . 42
Definition 3.16 Tape Condition . 43

Definition 4.1 Policy Oracle . 45
Definition 4.2 Correctness . 45
Definition 4.3 Ideal Oracle . 46
Definition 4.4 Feasible Oracle . 47
Definition 4.5 Configured Oracle . 49
Definition 4.6 Instantiated Oracle . 50
Definition 4.7 Policy Violation . 51
Definition 4.8 Unequivocal Violation . 51
Definition 4.9 Equivocal Violation . 52
Definition 4.10 Indirect Violation . 52
Definition 4.11 Vulnerability . 53
Definition 4.12 Inherent Violation . 54
Definition 4.13 Inherent Vulnerability . 54
Definition 4.14 Configuration Violation . 55
Definition 4.15 Configuration Vulnerability . 55
Definition 4.16 Implementation Violation . 56
Definition 4.17 Implementation Vulnerability . 56
Definition 4.18 Absolute Vulnerability . 57

Definition 5.1 Implementation Violation . 69
Definition 5.2 Precondition . 69
Definition 5.3 Implementation Vulnerability . 70

xi

Definition 5.4 Perfect Knowledge Assumption . 70
Definition 5.5 Representative System Set . 72
Definition 5.6 System Oracle . 73
Definition 5.7 System Precondition Set . 74
Definition 5.8 System Violation Set . 74
Definition 5.9 Universal Precondition Set . 75
Definition 5.10 Universal Violation Set . 75
Definition 5.11 Characteristic . 75
Definition 5.12 Characteristic Oracle . 76
Definition 5.13 Symptom . 76
Definition 5.14 Symptom Oracle . 77
Definition 5.15 Soundness . 77
Definition 5.16 Completeness . 78
Definition 5.17 Universal Characteristic Set . 78
Definition 5.18 Universal Symptom Set . 78
Definition 5.19 Basic Characteristic Set . 79
Definition 5.20 Basic Symptom Set . 79
Definition 5.21 Implementation Vulnerability Abstraction . 80
Definition 5.22 Implementation Vulnerability Equivalence Class. 80
Definition 5.23 Direct Executable Buffer Overflow Vulnerability. 83
Definition 5.24 Indirect Executable Buffer Overflow Vulnerability . 83
Definition 5.25 Direct Data Buffer Overflow Vulnerability . 83
Definition 5.26 Indirect Data Buffer Overflow Vulnerability . 83
Definition 5.27 Characteristic Class . 84
Definition 5.28 Symptom Class . 84
Definition 5.29 Master Characteristic Tree . 85
Definition 5.30 Master Symptom Tree. 85
Definition 5.31 Master Classification Tree . 85
Definition 5.32 Vulnerability Classification Tree. 85

Definition A.1 Trace . 115
Definition A.2 TRACE(M , w) . 115
Definition A.3 Partial Trace . 117
Definition A.4 PARTIAL(M , w , n) . 117
Definition A.5 Valid Configurations . 118
Definition A.6 VALID (M) . 118
Definition A.7 SECURETM .120
Definition A.8 Security . 120
Definition A.9 UNSECURETM (Language) . 122
Definition A.10 RTSECURETM . 123
Definition A.11 Real-Time Security . 123

Definition B.1 Basic Characteristic Set (Minimal Set Cover) . 130
Definition B.2 Basic Characteristic Set (Minimal Superset Cover) . 133
Full Terminology Index . 146

xii

1

CHAPTER 1

Introduction

This dissertation introduces the Policy-Based Vulnerability Analysis Framework, which balances

formal and practical objectives to achieve a framework capable of producing repeatable results

in realistic environments. This chapter discusses the motivation, scope, and objectives of this

framework, and provides an overview of our approach.

§1.1 Motivation

The area of vulnerability analysis is plagued by ambiguity. The term “vulnerability” itself is not

precisely defined, despite its “fundamental nature” in computer security [FIT04]. Authors often

draw an ambiguous line between vulnerabilities, bugs, errors, exploits, exposures, flaws, inci-

dents, threats, and weaknesses. As a result, what is considered a vulnerability varies between

websites, books, papers, and online vulnerability databases. For example, a vulnerability is de-

fined in one book as “an error or weakness in the design, implementation, or operation of the

system” [SCH99, p316], but as only those weaknesses that “cause harm to the stakeholders of an

application” by another [OWA09].

Krsul addresses this by introducing a “unifying definition” of a software vulnerability that

is based on security policy [KRS98]. A security policy specifies what is considered misuse in a

specific environment, allowing us to distinguish among software bugs, errors, or flaws from vul-

nerabilities. A policy-based notion of a vulnerability has been adopted by many in the security

community [BIS99, FIT04, CVE09].

However, a security policy itself is often ambiguous and rarely explicitly or precisely defined.

For example, the Common Vulnerabilities and Exposures (CVE) website defines a vulnerability

as a mistake in software that violates a “reasonable security policy” for that system, but does

2

not specify what is considered reasonable in this context [CVE09]. As a result, policy-based def-

initions shift the ambiguity from the definition of a vulnerability to the definition of a security

policy. The traditional pillars of confidentiality, integrity, and availability are often cited to make

a distinction between security policies and system requirements. As pointed out by Sterne, this

lacks the necessary precision and generality to define a specific security policy [STE91].

Further complicating matters, security policies exist at multiple levels of abstraction. For ex-

ample, a security policy at the system level specifies the actions that are authorized for each user

account. Vulnerability analysis usually places emphasis on this level of the security policy. How-

ever, security policies at an organizational level predate computer systems. Carlson addresses

this with the “Unifying Policy Hierarchy,” which provides a hierarchy of security policies and

vulnerabilities at different levels of abstraction [CAR06].

One option is to combat this ambiguity with formal models and methods, which provide

precise definitions and repeatable results [HUL94]. For example, Klein et al. formally verified

7, 500 lines of C code for seL4, a general purpose operating system microkernel for embedded

systems [KLE09]. They prove the implementation of the seL4 microkernel matches the specifi-

cation, eliminating an entire class of vulnerabilities. However, it took over 20 person-years and

200, 000 lines of proof script to formally verify the seL4 microkernel [KLE09]. The widely used

Linux kernel (version 2.6.25) is estimated to be over 6, 700, 000 lines of source code [MCP08],

several orders of magnitude larger than the seL4 microkernel. This type of formal verification is

repeatable, but may be impractical for environments dependent on more complex systems.

Significant progress has been made in applying formal model checking to larger code bases

such as the Linux kernel. For example, Chen et al. demonstrated that model checking using

MOPS, a static analysis tool, is practical by analyzing over one million lines of code [CHE04].

Schwarz et al. later used MOPS to perform model checking on an entire Linux distribution in

approximately 150 person-hours [SCH05]. However, to do so, they focused on a small number of

temporal safety properties. While formal methods are repeatable, the scope at which they may

be used in practice is limited by the complexity of the systems and the resources available.

As analysis becomes less formal, it becomes more difficult to replicate. Consider the recent

recommendations to include “Open Ended Vulnerability Testing,” a term for penetration testing,

in the latest Voluntary Voting System Guidelines [VVS07]. Penetration testing is an “informal,

3

non-rigorous technique for checking the security of a system” and an important component of

vulnerability analysis in practice [BIS03A, p660]. However, frameworks for penetration testing

such as the “Flaw Hypothesis Methodology” [LIN75, WEI95] lack a “systematic examination” of

the system [BIS03A, p660]. As a consequence, two different teams performing penetration tests

on the same system may produce widely varying results.

Herein lies the problem. Repeatability is an integral part of a scientific experiment [BOY00,

FEY74]. However, the repeatability of the results from vulnerability analysis is hindered by im-

precise notions of a vulnerability and a security policy. Formal models and methods are able to

provide this precision and repeatability, but at a cost that may not always be practical. This leads

us to the following problem statement:

PROBLEM STATEMENT: Vulnerability analysis requires a framework such that an-

alysis is both repeatable and practical.

Unfortunately, repeatability and practicality are often conflicting objectives. Formal results

are repeatable in theoretical environments, but are often too complex or time consuming to

directly apply in practice. Methods with no formal considerations are often ad hoc and difficult

if not impossible to replicate independently. This tension creates a wide gap between theory and

practice. The focus of research is often on either theoretical or practical objectives, but rarely

both. We examine how to bridge the gap between theory and practice for certain small-scale

environments—and as a result, provide a vulnerability analysis framework that is capable of both

repeatable and practical analysis.

§1.2 Analysis Scope
A flexible framework may be tailored based on the amount of resources available and the specific

environment in question. However, the scope of vulnerability analysis can range from analyzing

a single specific system to examining a large and diverse set of systems in a dynamic environ-

ment. We focus on vulnerability analysis for a stable, small-scale environment with a handful of

systems. We informally define an environment to include a set of resources, the users of those re-

sources, and the security policy specifying how those users are authorized to interact with those

resources. We consider an environment stable when the resources, users, and security policy of

that environment exhibit no significant change over moderate periods of time.

4

Finally, reproducibility is essential for scientific computer security experiments [PEI07A].

This dissertation focuses on repeatability, which is only one aspect of reproducibility.

§1.3 Objectives

We address the problem statement introduced in section 1.1 with the Policy-Based Vulnerability

Analysis Framework. Our primary objective is as follows:

PRIMARY OBJECTIVE: Provide a framework for policy-based vulnerability ana-

lysis such that analysis is both repeatable and practical.

A framework that achieves a balance between theory and practice provides a principled and

repeatable approach to vulnerability analysis. However, we must avoid compromising our objec-

tives to the degree that our framework is neither formal nor practical. To this end, our framework

must have several other qualities.

We seek a strong theoretical foundation for the sake of repeatability. Along these lines, the

framework should utilize well-established formal concepts in computer science and computer

security, and replicate foundational theoretical results. We also consider how practice can in-

fluence our theoretical framework. For example, to capture a realistic environment, the frame-

work should take into account both security procedures and security mechanisms—regardless

of whether they are technical or non-technical in nature. The framework should ultimately re-

flect how the concepts of a vulnerability and a security policy are discussed and used by the

security community. Specifically, the framework should allow analysts to gain insight, but not

break well-established intuition.

We also take into consideration how ambiguity may be introduced into the framework when

moving between theoretical and practical settings. We accept certain levels of ambiguity for the

sake of practicality, but try to encapsulate where ambiguity is introduced and explore how am-

biguity affects the results provided by our analysis framework. In essence, we should be unam-

biguous about where and how ambiguity affects the framework.

Finally, while practicality and repeatability are properties that are difficult to prove, these

properties can be demonstrated. As such, the framework should be demonstrated on a realis-

tic environment. We seek to balance all of these objectives throughout our entire Policy-Based

5

Vulnerability Analysis Framework. However, different components of our framework achieve

different levels of balance between theory and practice. We discuss the specific focus of each

component in the following chapters, and revisit how well we achieve our framework objectives

after the entire framework has been introduced.

§1.4 Approach

We build the Policy-Based Vulnerability Analysis Framework from three primary components:

the Policy-Based Vulnerability Hierarchy, Formal Implementation Vulnerability Model, and Char-

acteristic-Based Vulnerability Classification Scheme. Each of these components provide a layer

of formal foundation for our framework. We look to these components for insight, which influ-

ences our approach to vulnerability analysis.

The Policy-Based Vulnerability Hierarchy defines a security policy at four levels of abstrac-

tion: ideal, feasible, configured, and instantiated. We use this policy hierarchy to create a hierar-

chy of vulnerabilities based on conflicts between these levels of policy. This results in three types

of vulnerabilities: inherent, configuration, and implementation. At the lowest level of this hier-

archy are implementation vulnerabilities, which occur when there is a policy conflict between

the configured and instantiated levels of security policy.

We focus on implementation vulnerabilities with the Formal Implementation Vulnerability

Model. This model formalizes the notions of a precondition and policy violation based on the

computation trace of a deterministic universal Turing machine. We use this model to demon-

strate that real-time security is decidable but likely intractable. These results suggest a shift in

thinking, from detecting if a system is secure to detecting when a system is non-secure.

We pick up this line of reasoning with the Characteristic-Based Vulnerability Classification

Scheme. We use the Formal Implementation Vulnerability Model as the formal foundation for

characteristics and symptoms, which provide a more practical level of abstraction for implemen-

tation vulnerabilities. The characteristic-based approach allows us to determine which charac-

teristics tend to lead to vulnerabilities, and detect when a system may be non-secure.

We use results from the Characteristic-Based Vulnerability Classification Scheme to inform

how we perform implementation vulnerability analysis with the Policy-Based Vulnerability Ana-

lysis Framework. The framework is divided into three phases: preparation, analysis, and mitiga-

6

FIGURE 1.1: FRAMEWORK OVERVIEW

Policy-Based
Vulnerability Hierarchy

Formal Implementation
Vulnerability Model

Characteristic-Based
Vulnerability Classification

Policy-Based Vulnerability
Analysis Framework

An overview of the Policy-Based Vulnerability Analysis Framework and its major components.
The Policy-Based Vulnerability Hierarchy is introduced in chapter 4. The Formal Implementa-
tion Vulnerability Model and Characteristic-Based Vulnerability Classification Scheme are in-
troduced in chapter 5, with additional details available in the appendices. The Policy-Based
Vulnerability Analysis Framework itself is introduced in chapter 6.

tion. We define the scope and approximate the configured oracle in the preparation phase, and

identify characteristics and vulnerabilities in the analysis phase. Finally, we determine if we are

able to mitigate the discovered vulnerabilities by mitigating characteristics in the analysis phase.

As a result, we are able to provide a framework for implementation vulnerability analysis that is

capable of producing repeatable results in practice.

§1.5 Organization
This chapter discusses the motivation, scope, and objectives of this framework, as well as an

overview of our approach. The remainder of this dissertation is organized as follows:

• Chapter 2: Background

• Chapter 3: Security Policy

• Chapter 4: Vulnerability Hierarchy

• Chapter 5: Vulnerability Classification

• Chapter 6: Vulnerability Analysis

• Chapter 7: Conclusion

We review security policy and Turing machines in chapter 2 to make our notation clear, as

well as discuss prior and related work. We discuss our policy-based approach in chapter 3, and

formally define the policy terminology used throughout this dissertation. Chapter 4 provides

a policy-based hierarchy of vulnerabilities, and chapter 5 provides a characteristic-based clas-

sification scheme for the lowest level of vulnerabilities defined in this hierarchy. We combine

7

these components in chapter 6 to form the Policy-Based Vulnerability Analysis Framework. We

summarize the framework and discuss how well we meet our objectives in chapter 7.

We also provide several appendices to discuss certain topics in more detail. This includes

a detailed introduction of the Formal Implementation Vulnerability Model, which provides the

theoretical foundation for the Characteristic-Based Vulnerability Classification Scheme. The ap-

pendices are organized as follows:

• Appendix A: Vulnerability Model

• Appendix B: Discussion

This dissertation introduces several new terms and notation. We provide a terminology and

notation table at the end of most chapters, and a terminology index following the bibliography.

8

CHAPTER 2

Background

We examine related work in this chapter, including several foundational models and early iter-

ations of the Policy-Based Vulnerability Analysis Framework. We then provide a general back-

ground on security policy and Turing machines to introduce the terminology and notation used

throughout this dissertation.

§2.1 Foundations

Mathematical models of systems, security, and policy have existed since the early 1970s. While

the term security policy does not appear in many of the earliest works, the concepts being dis-

cussed provide a foundation for how security policy is used today. We examine several of these

foundational models† in this section.

§2.1.1 Access Control Matrix (ACM) Model

We start with the Access Control Matrix (ACM) model [LAM71], which is one of the earliest and

most familiar models for expressing policy at the system level. The access control matrix model

has evolved since its introduction in the early 1970s. We focus our discussion in this section on

the variant by Graham and Denning [GRA71].

The model defines a protection system with three major components: a set of objects, a set

of subjects, and a set of rules. The set of objects include any entity “to which access must be

controlled,” like files or memory. The set of objects includes the set of subjects, which are “active

entit[ies]” capable of manipulating other objects. Subjects may be represented as a process and

the domain or context that process operates. The rules govern how subjects may access objects

based on an access control matrix and how the access control matrix changes.

† See [LAN81] or [BIS03A] for a more in depth overview of these models.

9

FIGURE 2.1: EX AMPLE ACCESS CONTROL MATRIX

objects

subjects root yasmin zane file1 file2

root c o o - -

yasmin - c - o,r r*,w

zane - - c r o,r,w

c:control o:owner r:read w:write *:copy flag

An example access control matrix. The owner attribute allows subject root to remove subjects
yasmin and zane from the matrix. The control attribute allows yasmin to read her attributes
for file2. The copy flag, denoted by the * symbol, allows yasmin to transfer the read attribute
for file2 to other subjects. The owner attribute allows zane to remove the write attribute for
file2 from yasmin.

In our framework, we use a hierarchical approach rather than an access control matrix to

capture a security policy. Our approach is still able to capture a security policy represented by an

access control matrix, but also allows us to capture both system and non-system policy events at

different levels of abstraction.

§2.1.2 Harrison-Ruzzo-Ullman (HRU) Model

The Harrison-Ruzzo-Ullman (HRU) Model [HAR76] is a formal protection system model based

on the access control matrix. The HRU model defines a protection system to be a set of rights R

and commands C , and the configuration of such a system to be the tuple (S, O, P) where S is

the set of subjects, O is the set of objects such that S ⊆ O, and P is the access control matrix

such that P[s , o] ⊆ R for a subject s ∈ S and object o ∈ O. The access control matrix P may

only be manipulated by a fixed set of six primitive operations: enter/delete right r from P[s , o],

create/destroy subject s from P , and create/destroy object o from P . The set of commands C are

built from these operations and may allow or deny operations based on the existing rights in the

access control matrix.

The safety problem determines whether a subject may acquire new privileges for an object

from a series of commands. The authors show that safety in the HRU Model is undecidable ex-

cept in some special cases. Specifically, they show that no algorithm can decide whether a com-

mand c ∈ C from an arbitrary protection system with configuration (S, O, P) adds a right r ∈ R

to an entry in P that did not already have that right. However, by restricting commands to a

single operation, the safety problem becomes decidable—albeit intractable to actually solve in

practice. These results provide insight into the undecidability of security itself. We know a system

10

FIGURE 2.2: TAKE-GRANT GRAPHICAL REPRESENTATION

Node Notation Edge Notation

subject
object
subject or object x y

α

Graphical representation of subjects, objects, and access attributes in a Take-Grant protection
system. The edge labeled α indicates subject x has set of access attributes α for object y . This
is equivalent to stating P[x , y] = αwhere P is an access control matrix.

must be safe with respect to all rights in order to be secure† [BIS03A, p48]. Therefore, knowing

when the safety problem is decidable informs whether it is possible to solve the broader problem

of security in general.

Our formal model of implementation vulnerabilities has some similarities with the HRU

model, but the models are fundamentally different. The HRU model provides a model of a pro-

tection system and proves whether safety in that system is decidable. We provide a formal model

of policy, which we use to show whether security given that policy is decidable. This reflects the

overall policy-based approach of our vulnerability analysis framework.

§2.1.3 Take-Grant Protection Model

Instead of an access control matrix, the Take-Grant Protection Model uses a directed graph to

model a protection system. The original take-grant system was introduced by Jones, Lipton, and

Snyder [JON76] and has since been heavily used, studied, and extended [LAN81, BIS84]. For the

purpose of this discussion, we focus on the model as presented by Bishop [BIS95, BIS03A].

The protection system is captured as a protection graph with nodes representing subjects

and objects, and labeled edges representing access attributes (as illustrated in Figure 2.2). Sub-

jects may modify the protection graph through a set of graph rewriting rules. The model’s name-

sake comes from the two key rules take and grant (illustrated in Figure 2.3), which govern how

rights may flow between nodes. Using techniques from graph theory, we are able to analyze the

protection graph to determine if and when rights may be shared or stolen in the system.

However, these rules alone do not illustrate how information may flow in the system. Bishop

and Snyder define two types of rules: de jure rules which govern the transfer of rights and de facto

† However, a safe system is not necessarily secure.

11

FIGURE 2.3: TAKE-GRANT RULES

x y z

t ∈ γ α ∈ β

x y z

γ β

α

y x z

g ∈ γ α ∈ β

y x z

γ β

α

Illustrates the take rule (top) and grant rule (bottom) [BIS95, p5]. A subject x may take at-
tribute α ∈ β for node z from node y when x has the take attribute t. The grant rule operates
similarly. The ` symbol indicates the left graph is transformed into the right graph when the
rule is applied.

rules which govern the transfer of information. These de facto rules illustrate how a subject may

share or acquire information via the access attributes already present in the protection graph.

The Take-Grant protection system provides a powerful theoretical model for studying the

safety problem. Recall from section 2.1.2 that “no algorithm can decide the safety of an arbi-

trary configuration of an arbitrary protection system” [HAR76]. However, the original Take-Grant

results show that given a specific system with specific rules, the safety problem is decidable in

linear time [SNY77]. This result illustrates that certain special cases of security may be decid-

able, which we explore further with the Formal Implementation Vulnerability Model. We discuss

additional decidability results in section 2.3.2.

§2.2 Prior Work

This dissertation integrates and extends several pre-existing components to form the Policy-

Based Vulnerability Analysis Framework. We discuss some of this prior work in this section.

§2.2.1 Unifying Policy Hierarchy

The Policy-Based Vulnerability Hierarchy is based on the “Unifying Policy Hierarchy” by Carl-

son [CAR06]. The Unifying Policy Hierarchy Model addresses ambiguous notions of security

policy by defining security policy at four different levels of abstraction: the Oracle Policy, Fea-

sible Oracle Policy, Configured Policy, and Actual Policy. The Oracle Policy (OP) is described as

an “omnipresent policy” corresponding to the “desires of the policy makers.” The Feasible Ora-

cle Policy (FOP) is defined as representing “the will of policy makers” while taking into account

12

FIGURE 2.4: COMPARISON OF HIERARCHY TERMINOLOGY

Original Current

Oracle Policy Ideal Oracle
Feasible Oracle Policy Feasible Oracle

Configured Policy Configured Oracle
Actual Policy Instantiated Oracle

Inherent Vulnerability Inherent Vulnerability
Configuration Vulnerability Configuration Vulnerability

Runtime Vulnerability Implementation Vulnerability

Comparison of the original Unifying Policy Hierarchy terminology with that of our own. For
example, we refer to the “Actual Policy” in the original hierarchy as the “Instantiated Oracle” in
our framework.

“the mechanics and access controls of the particular system implementation.” The Configured

Policy (CP) represents “the access control settings of a system actually instantiated by an admin-

istrator.” Finally, the Actual Policy (AP) represents “the policy in effect on a system at runtime.”

Carlson uses this policy hierarchy to define a hierarchy of vulnerabilities.

The hierarchy presented in this dissertation keeps in the same spirit as the original, but

makes substantial alterations to the model. We summarize the terminology changes in Figure 2.4

and detail specific modifications in chapter 4.

§2.2.2 Vulnerability Analysis

The paper titled “Vulnerabilities Analysis” by Bishop [BIS99] provides the foundation for the

Characteristic-Based Vulnerability Classification Scheme, and the motivation behind the entire

Policy-Based Vulnerability Analysis Framework. This work compares the Research Into Secure

Operating Systems (RISOS) [ABB76] and Neumann’s organization [NEU78] of the Protection Ana-

lysis (PA) [BIS78] classification schemes, as well as Aslam’s Taxonomy of Security Faults [ASL95].

This work illustrates how classification using these approaches varies depending on the point

of view and level of abstraction, and proposes a characteristic-based vulnerability classification

scheme with five specific properties to help alleviate these issues. We base our own classification

objectives on these properties.

The classification scheme presented in chapter 5 is based on this work. A characteristic is

originally defined in this work as “a condition that must hold for the vulnerability to exist.” We

13

FIGURE 2.5: EXPLOIT CL ASSIFICATION TREE

〈vulnerability〉

〈design flaw〉

〈forgery〉

authentication
flaw

〈vulnerability〉

〈design flaw〉

〈forgery〉

nonce flaw

〈symptom〉

disable
〈resource〉

disable
〈host resource〉

disable
host service

〈symptom〉

divert
〈resource〉

divert
〈network resource〉

divert
connection

〈symptom〉

divert
〈resource〉

divert
〈host resource〉

divert
host credentials

〈exploit〉

Classification of a VLAN trunking protocol exploit by Whalen et al. [WHA05]. The symptom tree
captures a possible denial of service and man-in-the-middle attack.

formalize this notion with the Formal Implementation Vulnerability Model, and integrate this

work with the hierarchical approach discussed in section 2.2.4.

§2.2.3 Buffer Overflow Characteristics

An initial set of characteristics for buffer overflow vulnerabilities is presented in the paper, “A

Taxonomy of Buffer Overflow Preconditions” [BIS10]. Specifically, we identified four classes of

buffer overflow vulnerabilities, each which result from a different set of characteristics. Addi-

tionally, we illustrate the connection between these characteristics and existing defenses against

buffer overflow vulnerabilities. For example, StackGuard [COW98] focuses on detecting when

the stored return address is countered, which is a characteristic of direct executable buffer over-

flow [BIS10, p12].

This work demonstrates how a characteristic-based approach illuminates possible defense

vectors against vulnerabilities, as well as differentiates between a buffer overflow bug versus a

buffer overflow vulnerability. We refine these original characteristics in using pseudo-code chap-

ter 5, and develop a classification grammar for these characteristics.

§2.2.4 Protocol Exploit Classification

The paper “Protocol Vulnerability Analysis” by Whalen et al. extends the characteristic-based

approach to protocol exploits using an Extended Backus-Naur Form (EBNF) grammar for clas-

sification, and introduces the notion of a symptoms to describe the policy violations that result

from exploiting a vulnerability [WHA05]. The classification grammar provides a hierarchical ap-

proach to classification. The classification of individual exploits may then be visualized as trees,

14

illustrated in Figure 2.5, consisting of multiple vulnerability and symptom branches. Whalen

et al. applied this approach to 24 different protocol exploits, most of which took advantage of

protocol design flaws, misconfiguration, or authentication flaws. We generalize this hierarchical

approach for our implementation vulnerability classification scheme.

§2.2.5 Insider Threat Analysis

We previously expanded the Unifying Policy Hierarchy to capture the insider problem [BIS08,

BIS09B]. Specifically, the insider threat is defined as existing “whenever someone has more au-

thorized privileges at a lower policy level than at a higher policy level.” This mismatch captures a

potential for misuse that can be leveraged by the insider. To do this, we expanded the ideal policy

oracle to capture the intent of the subject. For example, at the ideal level, Yasmin is only autho-

rized to access medical records to treat patients. However, at the feasible level, we are unable to

capture Yasmin’s intent. Therefore, she is able to access those medical records with the intent

to sell that information to drug companies. We define the notion of conditional policy events in

chapter 3 to capture this expansion of the policy hierarchy.

§2.2.6 Early Iterations

Early iterations of this work appears in numerous technical reports. The technical report “Tree

Approach to Vulnerability Classification” introduces our first attempt at formalizing classifica-

tion trees for characteristics and symptoms [ENG06A]. We followed up on this work with the

technical report “A Practical Formalism for Vulnerability Comparison,” in which we attempt to

formalize the notion of a characteristic and vulnerability equivalence class, and introduce the

perfect knowledge assumption for the first time [ENG06B]. We refined these notions further in the

technical report “A Model for Vulnerability Analysis and Classification” [ENG08A]. We formalize

the underlying notions of a precondition and policy violation in the technical report “Modeling

Computer Insecurity,” which had been left as primitives in previous technical reports.

§2.3 Related Work

This dissertation integrates security policy, vulnerability classification, and vulnerability analysis

into a single framework. We discuss some relevant work in each of these areas next.

15

FIGURE 2.6: SECURITY POLICY OBJECTIVES

confidentiality

integrity availability

security policy objectives

Sterne’s depiction of the scope of security policy objectives as a combination of confidentiality,
integrity, and availability (or assured service) concerns [STE91, Figure 2].

§2.3.1 Security Policy

The Policy-Based Vulnerability Hierarchy defines a security policy at multiple levels of abstrac-

tion. There are several other models that take a multi-level approach to defining security policy.

We highlight some of these security policy models in this section.

Goguen and Meseguer define a security policy as “a set of noninterference assertions” and

define two types of policy: static and dynamic [GOG82]. A static security policy includes normal

noninterference assertions, whereas a dynamic security policy includes conditional noninter-

ference assertions. Both types of security policies may be captured by the configured level of

security policy in the Policy-Based Vulnerability Hierarchy. The security verification problem

they present is equivalent to determining if there are any implementation vulnerabilities caused

by the gap between the configured and instantiated levels of the hierarchy. They also use a for-

malization similar to the Formal Implementation Vulnerability Model introduced in Appendix A.

Sterne observes that although security policy is “fundamental to computer security,” the

difference between a security requirement versus any other critical system requirement is un-

clear [STE91]. Instead of relying on confidentiality, integrity, and availability to distinguish secu-

rity policy, he defines the notion of a security policy objective as “a statement of intent to protect

an identified resource from unauthorized use.” This is closely related to our notion of a pol-

icy statement, which states what is authorized or unauthorized for a particular resource. Sterne

16

then defines two levels of security policy, organizational and automated, and illustrates the gap

between them. The organizational security policy (OSP) is the set of “laws, rules, and practices”

which specifies how a security policy objective “is to be manifested in the routine activities of the

organization.” In contrast, the automated security policy (ASP) “specifies what a trusted system

is trusted to do.” The OSP is roughly equivalent to the ideal and feasible policy levels, and the

ASP corresponds to the configured policy level.

Bishop and Peisert examine the difference between a site’s stated security policy, and the

security policy enforced by the security mechanisms on the system and network [BIS06]. They

show how to detect configuration errors between the stated and enforced security policies using

an intermediate policy representation and policy discovery. This work differentiates between

intended and implemented security policy, but only at the middle levels of the hierarchy. We

can equate this work to configuration vulnerabilities in the Policy-Based Vulnerability Hierarchy,

which occur in the gap between the feasible and configured policy levels.

Jajodia et al. define an Authorization Specification Language (ASL) that is computable in

polynomial time [JAJ97A]. In this work, they define an authorization policy as “a mapping that

maps 4-tuples (o, u , R , a) consisting of an object, user, role set, and action, respectively to the

set { authorized, denied }.” An authorization policy is equivalent to the configured level of se-

curity policy in the hierarchy. The formalization of an authorization policy as a tuple is also

nearly identical to our notion of a policy event and policy decision.

Schneider provides a predicate-based formalization of security policy, and illustrates that

not all polices are enforceable [SCH00]. Specifically, he defines a class of Execution Monitoring

(EM) enforceable security policies, and shows that if a policy is not limited to safety properties,

then the policy is not EM-enforceable. Hamlen et al. expand on this initial work by examining

the class of policies that may be enforced by program rewriting (RW), and provide a taxonomy

of enforceable policies [HAM06]. They demonstrate that the class of RW-enforceable policies are

a superset of EM-enforceable policies, and may contain some policies with non-safety proper-

ties. Ligatti et al. examine a more powerful class of program monitors, called edit automata,

that may insert or suppress actions [LIG09]. They use a different set of assumptions than that of

Hamel et al. regarding what information their program monitors may access, but demonstrate

that these monitors are able to enforce “infinite renewal properties” that include certain non-

17

FIGURE 2.7: SECURITY POLICY MODELS

Policy Hierarchy Related Policy Models

Ideal OSP [STE91]
Feasible Stated [BIS06], EM-Enforceable [SCH00],

RW-Enforceable [HAM06]
Configured Static/Dynamic [GOG82], ASP [STE91],

Enforced [BIS06], ASL [JAJ97A]
Instantiated N/A

Comparison of the Policy-Based Vulnerability Hierarchy with related security policy models.
The Policy-Based Vulnerability Hierarchy captures a broader range of abstraction than most
models of security policy.

safety properties. These results on enforceable security policies illustrate the complex gap be-

tween the ideal and feasible policy oracles in the Policy-Based Vulnerability Hierarchy. There are

also similarities between the formalizations used by Hamlen et al. to the Formal Implementation

Vulnerability Model, which we discuss in section 2.3.2.

The attack surface work by Howard et al. also observes that vulnerabilities occur at different

levels of a system, and similarly defines a vulnerability as “the difference in behaviors” between

these levels [HOW05]. The focus of the attack surface work is not on security policy or identifying

system level vulnerabilities, but determining the attackability of a system.

§2.3.2 Theoretical Results

The Formal Implementation Vulnerability Model provides a new approach to formally defin-

ing security policy at the state machine level, and allows us to formally define implementation

vulnerabilities. We use Turing machines as a foundation in this model, which allows us to also

explore the decidability of various security problems. We highlight some of related decidability

results and theoretical models in this section.

The foundational models introduced in section 2.1 provide a specific protection system with

a predefined security policy, and determine whether security in that context is decidable. The

Formal Implementation Vulnerability Model introduced in Appendix A instead attempts to de-

fine security and a security policy for a pre-existing theoretical model—a deterministic universal

Turing machine. Our work also differs from these models in purpose. We primarily seek to pro-

vide a formalization of implementation vulnerabilities.

18

Goguen and Meseguer introduce the notion of noninterference assertions to describe secu-

rity policy [GOG82]. Rushby summarizes the concept of noninterference as follows: “a security

domain u is noninterfering with a domain v if no action performed by u can influence subse-

quent outputs as seen by v ” [RUS92]. The work by Goguen and Meseguer shares a goal similar

to our own. They use a state machine-based system model, examine how to express a security

policy for that model, and discuss how to verify a machine satisfies that security policy. How-

ever, like other foundational work, they define a specific type of capability system comprising of

a state of users, states, state commands, outputs, capability tables, an output function, a state

transition function, and a capability transition function. Noninterference has been widely stud-

ied since its introduction by Goguen and Meseguer.† For example, D’Souza et al. demonstrate

that model-checking information flow properties, such as noninterference, is undecidable for

pushdown system models [D’S08].

Formal models are “not a panacea” for security [DEN99]. Our focus is on providing a for-

mal model, not applying formal methods. However, there may be several areas where formal

methods can help improve security [WIN98]. We focus on two of these: verification and model

checking. Formal verification is the process of proving a system satisfies its formal specifica-

tion [MEE05], and is able to eliminate errors in implementation. For example, Klein et al. for-

mally verified the implementation of seL4, a general purpose operating system microkernel for

embedded systems [KLE09]. However, it is possible for the formal specification itself to be incor-

rect. Formal verification is also resource intensive; the verification of the seL4 microkernel took

over 20 person years.

Model checking is generally less complete than formal verification. Instead of testing entire

implementations, model checking is used to test whether specific properties hold in a system.

Wing describes several older model checking results [WIN98]. More recent results include the

model checking results by Chen et al. and later Schwarz et al. on the Linux distribution for tem-

poral safety properties [CHE04, SCH05]. While the scope of model checking is often smaller, it is

usually less resource intensive than formal specification and verification. For example, model

checking the entire Linux distribution took just over 150 person hours.

† For an introduction to some of this work, see [RUS92].

19

Fithen et al. observe that the concept of a vulnerability is ill-defined, and provide a formal

model of a vulnerability that is able to uncover relationships between vulnerabilities [FIT04]. At

a high level, their goal and approach is similar to ours. For example, they define a vulnerability

as, “an unplanned system feature that an intruder may exploit, if he/she can establish certain

preconditions, to achieve particular impacts on that system that violate its security policy.” Our

definition is similar, also relying on preconditions and security policy violations. At a lower level,

our approaches differ significantly. They use an open source rule-based production system for

implementing their model using high-level propositional logic. For example:

(software (name internet-explorer) (version 4.01))

While this is valuable for the administration of systems in practice, this approach captures what

is vulnerable—not why it is vulnerable. Our notion of preconditions captures the underlying

causes associated with a vulnerability, and operates at an entirely different level of abstraction.

Zhang introduces a general policy-based security model for information flow in nondeter-

ministic systems [ZHA97]. Our notions of security are nearly identical. Zhang defines security

based on the possible executions of the system, whereas we define security based on the pos-

sible configurations of a system. Our underlying system models and approaches are different.

For example, Zhang models a generic nondeterministic system, whereas we model determinis-

tic universal Turing machines.

Perhaps most similar to our formalization is the work by Hamlen et al. [HAM06]. They use

program machines, which are multi-tape deterministic Turing machines, to model untrusted

programs and specify a fixed set of observable events based on a “trace” of the Turing machine.

They also prove a complex relationship between the classes of decidable, co-recursively enu-

merable, EM-enforceable, and RW-enforceable security policies. There are subtle differences

between our models. For example, our formalizations of a policy event differ. The largest differ-

ence lies in the focus and application of these models. The focus of the Formal Implementation

Vulnerability Model is to provide a formal foundation for the classification of implementation

vulnerabilities, whereas this work provides a taxonomy of security policies.

Most decidability results focus on the safety problem, which is an important component of

security. Li and Tripunitara examine the safety problem in the Graham-Denning discretionary

access control (DAC) scheme, instead of the Harrison-Ruzzo-Ullman (HRU) scheme [LI05]. They

20

find that safety in this context is decidable in cubic running time. Kleiner and Newcomb revisit

the safety problem in a protection matrix model [KLE07]. They formulate the safety problem

by introducing Safety Access Temporal Logic (SATL) to express safety properties, and show that

model checking for this logic is undecidable. Like other work on the safety problem, they are

able to show a special-case of the problem is decidable when limiting the logic to a special subset

called Universal SATL.

§2.3.3 Vulnerability Classification

The classification scheme in chapter 5 is based on the prior work by Bishop [BIS99] and Whalen

et al. [WHA05]. Numerous other classification schemes exist, differing from ours in perspective

or approach. We highlight some of these classification schemes in this section.

Early classification work tends to classify bugs, errors, faults, or flaws instead of actual vul-

nerabilities. For example, the Research Into Secure Operating Systems (RISOS) classification

system provides seven classes of security flaws [ABB76], and Aslam provides a detailed UNIX

security fault taxonomy [ASL95]. These classification schemes capture a wide array of flaws and

faults observed in practice, but classification using these approaches may be inconsistent due to

ambiguity or varying points of view [BIS99].

Our characteristic-based classification approach is similar to the Protection Analysis (PA)

error classification system, as the notion of a “raw error pattern” is similar to our notion of a

characteristic [BIS78, NEU78]. This work also uses a layered approach, starting with errors to de-

rive raw error patterns, generalized patterns, and finally major error types. However, the original

categories of this work exist across multiple levels of abstraction, and belong to multiple global

categories. The attribute categorization work of Ostrand and Weyuker allows for development

of new characteristics similar to our classification system as well [OST84], but requires further

development to be widely applicable.

We classify vulnerabilities based on characteristics, which capture the conditions necessary

for the vulnerability to exist. There are numerous classification schemes that use different crite-

ria than ours. In his thesis, Krsul presents a formal vulnerability classification scheme based on

assumptions made by programmers [KRS98]. Landwehr provides a classification scheme that fo-

cuses the genesis, time of introduction, and location of vulnerabilities [LAN94]. Howard provides

21

a taxonomy that focuses on computer incidents, and uses events, actions, targets, and attacks

for classification [HOW97]. Cohen also provides a classification scheme based on attack and de-

fense [COH97A, COH97B]. In his classification schemes, he presents an extensive list of 94 attack

categories, 140 defense categories, and a list of 6 properties of attack and defense.

Some classification schemes have specific goals or a narrow scope. Endres presented a clas-

sification scheme from analyzing errors from a specific subset of programs [END75]. The focus

of the work was to determine what meaningful conclusions may be drawn from an analysis of er-

rors, and is not immediately extensible as a general vulnerability classification scheme. DeMillo

and Mathur present a grammar-based classification scheme of faults [DEM95]. They provide al-

gorithms for automated fault classification specific to problems found in TEX. Weber presents a

taxonomy of computer intrusions that focuses on creating good classes for evaluating intrusion

detection systems [WEB98].

§2.3.4 Vulnerability Analysis

The vulnerability analysis framework in chapter 6 builds off the characteristic-based analysis

approach by Bishop [BIS99]. We discuss some related vulnerability analysis frameworks in this

section, many of which differ from ours in purpose or approach.

An important component of vulnerability analysis in practice is penetration testing, which

is a “non-rigorous technique for checking the security of a system” [BIS03A, p660]. For exam-

ple, consider the Flaw Hypothesis Methodology (FHM) for penetration testing introduced by

Linde [LIN75]. The process is divided into four stages: knowledge generation, flaw hypothesis

generation, flaw hypothesis confirmation, and flaw generalization. Later iterations add a flaw

elimination stage to this process [WEI95]. During the first phase, analysis attempt to understand

how users interact with the system from both an abstract and implementation level perspective.

The second phase uses this information to form “flaw hypothesis” of suspected weaknesses in

the system. These hypothesis are tested in the third phase using thought experiments or live

tests. In the fourth phase, analysts generalize the findings and categorize the discovered weak-

nesses. The last phase attempts to eliminate the discovered flaws. At an abstract level, our three

stage analysis framework is similar to the Flaw Hypothesis Methodology, but how we perform

hypothesis generation and mitigation differs significantly.

22

There are numerous other approaches for penetration testing, including the Open Source

Security Testing Methodology Manual (OSSTMM) [HER06] and the Information Systems Security

Assessment Framework (ISSAF) [OPE06]. Penetration testing is effective at discovering flaws or

weaknesses, but the process often relies on the background experiences of the analysts. As a

result, penetration tests performed by different teams may produce very different results. We

attempt to add repeatability to the analysis process by adopting a characteristic-based approach.

The early analysis work by Ramakrishnan and Sekar uses a high-level specification language

to model system components for vulnerability analysis [RAM98]. This approach allows for the

use of formal methods to detect vulnerabilities. The analysis work by Jha et al. also takes a for-

mal approach by automatically creating attack graphs and performing model checking on these

graphs [JHA02]. While we begin with a formal model, we do not focus on developing a speci-

fication language or using formal methods in our analysis framework. Instead, we attempt to

abstract our formal models for use in practical settings.

The assessment work by Jøsang et al. introduces a different approach to vulnerability ana-

lysis, focusing on the tradeoffs between theoretical security and the usability of systems [JØ07].

While the focus of our implementation vulnerability analysis framework is not on usability, sev-

eral of the principles introduced in this work may be integrated into a high-level analysis using

the Policy-Based Vulnerability Hierarchy.

The analysis approach by Abedin et al. focuses on the evaluation and comparison of security

policies by analyzing a policy against known vulnerabilities. Whereas we use security policies for

vulnerability analysis, their work focuses on the use of vulnerability analysis to improve security

policies. Under our framework, their approach is similar to comparing the number of imple-

mentation vulnerabilities between different configured policies.

The work by Aven introduces a framework for quantitative risk analysis for both safety and

security [AVE07]. The process is broken into an eight step process, including the identification

of observable quantities, threats, hazards, and opportunities, an uncertainty and consequence

analysis, and the description and evaluation of risks and vulnerabilities. This analysis relies on

observable quantities and the ability to associate probabilities with events. In this dissertation,

we focus on a scenario for vulnerability analysis where these types of measures are largely un-

known and difficult to measure.

23

§2.4 Terminology

When possible, we use standard terminology and notation. However, there are multiple accepted

definitions for some terms. For example, there are numerous (yet equivalent) formal definitions

of a Turing machine used throughout computer science literature. As a result, we introduce the

basic terminology and notation used in this dissertation to avoid confusion.

§2.4.1 Security Policy

Our terminology is consistent with that of Bishop [BIS03A, p95–111]. We informally define a

security policy (or policy for short) as “a statement of what is, and what is not, allowed” and a

security mechanism as a “method, tool, or procedure for enforcing a security policy.” In general,

a policy language provides a consistent way to represent a security policy. A high-level policy

language is used to represent security policies independent of any underlying security mecha-

nisms, whereas a low-level policy language is specific to the underlying mechanisms. However,

for our framework, we are less concerned with how the security policy is represented than with

what the policy represents.

We adapt Carlson’s concepts of a policy event and policy decision for our work [CAR06].

Informally, a policy event is any event “of concern” to the policy makers. This may include

any event which affects the confidentiality, integrity, or availability of a resource. For example,

whether Yasmin is able to read a password file is an event that policy makers may want to con-

trol. However, whether Yasmin eats breakfast may not be a security concern. Informally, a policy

decision indicates if a policy event is allowed or disallowed. Together, a policy event and policy

decision represent a policy statement. For example, an informal policy statement may be: “Yas-

min is not allowed to read password files.” This captures both the policy event, Yasmin reading a

password file, and the policy decision to disallow the event. A policy violation occurs whenever a

policy statement is violated. This happens whenever a security mechanism enables a disallowed

policy event or prevents an allowed policy event. In our example, Yasmin being allowed to read

the password file represents a policy violation.

We also occasionally refer to open versus closed security policies [JAJ97B]. An open policy

assumes all policy events are allowed except for a specific set of disallowed policy events. Al-

24

ternatively, a closed policy assumes all events are disallowed except for a specific set of allowed

policy events. A security policy which specifies both allowed and disallowed events is a hybrid or

mixed policy. Hybrid policies are more prone to conflicts, which occurs when an event is both

allowed and disallowed by the security policy.

§2.4.2 Policy Properties

Ambiguity and implicit assumptions are often an issue when discussing security policy. Even if

the policy itself is explicit, there is often an implicit assumption that the policy being discussed

is appropriate for the environment. While this may be a fair assumption to make, doing so am-

biguously or implicitly may lead to complications. For example, it may be unclear what makes

a policy desirable in one context and not in another. It may also be unclear how this affects the

discussion if the security policy does not satisfy this requirement.

We do not attempt to define what makes a “desirable” policy, but we do make some explicit

assumptions about different properties that security policies have. Specifically, we rely on as-

sumptions of preciseness, completeness, and correctness of a security policy when introducing

our policy hierarchy in chapter 4.

We consider a security policy to be precise when it has the level of granularity necessary to

express all policy events of interest. For example, the default security levels of high, medium-

high, and medium in Internet Explorer may provide a security policy which is too coarse for

certain users. While a security policy may be more precise than necessary, the unnecessary pre-

cision generally increases the complexity of enforcing and managing the policy in practice.

We say a security policy is complete when it includes a policy decision for every possible

policy event. Security policies which include a default response, such as open or closed policies,

may be considered complete. However, some high-level hybrid security policies may uninten-

tionally omit whether uncommon policy events are authorized. It may be unclear whether to

allow or disallow the event, leading to an inconsistent policy response.

Finally, we consider a security policy to be correct when it accurately captures the intent of

the policy maker. For example, if a security mechanism is misconfigured, the resulting security

policy as configured is incorrect. A security policy must be both precise and complete to be

considered correct. Recall that a policy statement is a policy event and the associated policy

25

decision. A precise policy provides all of the policy events of interest to the policy makers, and

a complete policy provides policy decisions for all of those policy events. Both are necessary to

form correct policy statements. Otherwise, there will exist undefined policy events or unknown

policy responses, making it impossible to form a correct security policy.

However, it is possible for a policy to be complete, but imprecise and incorrect. For example,

the statement “everyone is allowed everything” is a trivial security policy. This security policy

captures all policy events, and hence is complete. However, it does not allow for fine-grained

control, making it imprecise. And, for most environments, this security policy is incorrect.

While ideally a security policy is precise, complete, and correct, in practice security poli-

cies are often imprecise, incomplete, and incorrect. This disconnect between the ideal and the

practical is only one of many when it comes to security policy. We explore these gaps between

different levels of policy in chapter 4.

§2.4.3 Turing Machines

Turing machines provide an important theoretical foundation for our framework. Turing ma-

chines and their variants are considered the most powerful theoretical models of computation,

and are sometimes used to model the computational capability of modern systems. The defini-

tions and notation presented in this section are consistent with those of Sipser [SIP97].

A Turing machine consists of three components: a control, an infinite tape, and a tape head.

Based on an input string, the control moves the tape head left or right, reading and writing to the

tape as necessary. Formally, a Turing machine is defined as a 7-tuple:

M = (Q , Σ, Γ, δ, q0, qa, qr)

The set Q is the set of states, including the start state q0 ∈ Q , the accept state qa ∈ Q , and the

reject state qr ∈ Q such that qa 6= qr. The Turing machine M uses an input alphabet Σ, which

is a subset of the tape (or output) alphabet Γ. When M is given an input string w ∈ Σ∗, the

start of the tape is initialized to the input string and completely blank everywhere else. The

blank symbol t ∈ Γ indicates the unused spaces on the tape, and may not appear in the input

alphabet. The transition function δ specifies how the machine operates, and is defined as:

δ : Q × Γ→ Q × Γ× { L, R }

26

The set { L, R } indicate whether the tape head moves left or right respectively. For example,

consider the transition:

δ(qi , x) = (qj , y , L)

This indicates that when the machine is in state qi ∈ Q and reaches symbol x ∈ Γ, it writes sym-

bol y ∈ Γ on the current location of the tape, moves to state qj ∈ Q , and moves the tape head

left. The transition function is often too complex to fully specify. However, the Church-Turing

thesis equates the notion of algorithms with Turing machines [SIP97, p143]. This allows us to

use algorithms instead of the full formal specification to describe Turing machines.

A configuration of a Turing machine captures the current state, the contents of the tape, and

the current location of the head. Formally, a configuration† is the string u qv where q ∈ Q is

the current state, the string u v ∈ Γ∗ gives the current contents of the tape, and the first position

of v gives the current location of the tape head. The start configuration of M on input string w

is the configuration q0 w . Any configuration of the form u qav is considered an accepting con-

figuration, and configurations of the form u qrv are rejecting configurations. Since the Turing

machine halts upon entering an accept or reject state, accepting and rejecting configurations

are considered halting configurations. A Turing machine M accepts input w when it enters an

accepting configuration, and the language of M , denoted as L(M), is the set of all strings that M

accepts.

There are several Turing machine variants. For example, an enumerator is a Turing ma-

chine variant that outputs accepted strings, and may or may not halt. A computable function f

is another variant of a Turing machine that halts with just f (w) on the tape. If the Turing ma-

chine always halts on any input w , it is considered a decider or total Turing machine. Finally, a

universal Turing machine is a Turing machine which is capable of simulating any other Turing

machine. We use the notation 〈M 〉 to denote the string encoding of M such that it can be given

as input to another Turing machine.

§2.4.4 Computability

We are able to determine whether a problem is solvable by studying whether the underlying

language is “computable” with a Turing machine. We are specifically interested in two classes

† This is sometimes referred to as the instantaneous description (or ID) of the Turing machine.

27

of languages defined by computability theory: recursively enumerable and decidable. A recur-

sively enumerable language includes any language that may be recognized by a Turing machine.

We are able to determine if a string does belong to a recursively enumerable language, but may

not be able to determine if a string does not belong. If the complement of the language is re-

cursively enumerable, we call it co-recursively enumerable. For example, stating a language

A is co-recursively enumerable indicates that the complement of A, denoted A, is recursively

enumerable.

A decidable language includes any language for which a decider Turing machine exists. We

are always able to determine whether or not a string belongs to a decidable language. A lan-

guage is decidable if and only if it is both recursively enumerable and co-recursively enumer-

able [SIP97, p167]. The complement to decidable languages is the class of undecidable lan-

guages. We may be unable to determine whether a string does or does not belong to an undecid-

able language. Any problem associated with an undecidable language is considered unsolvable.

An important tool to determining the decidability of a language is mapping reducibility. A

language A is considered mapping reducible to language B , written A ≤m B , if there exists a

computable function f : Σ∗ → Σ∗, where for every w :

w ∈ A ⇐⇒ f (w) ∈ B

We use mapping reductions and their associated theorems to demonstrate the decidability of a

languages defined by the Formal Implementation Vulnerability Model.

§2.4.5 Complexity

Determining whether languages are undecidable gives us important insight to which problems

are unsolvable. However, even if a problem is decidable, it may not be practical to solve on a

modern system. As such, we use techniques from both computability theory and complexity

theory when examining our theoretical models. Specifically, we also consider whether a lan-

guage belongs to the class P or NP .

Languages which belong to the class P may be decided in polynomial-time, and are associ-

ated with problems that are “realistically solvable” on modern systems [SIP97, 236]. Languages

which belong to the class NP may be verified in polynomial-time but may not be realistic to

solve. We are specifically concerned with languages which are considered NP -complete. The

28

complexity of such languages is tied to the entire class NP and whether P = NP , which is an open

question. Since there are no known methods for solving an NP-complete problem in polynomial

time, we consider such problems impractical or intractable. However, even if an optimal solu-

tion is intractable, there may exist an approximation algorithm for the problem which is able to

provide a near-optimal solution in polynomial-time [COR03, p1022].

§2.4.6 Computation Traces

The computation history of a Turing machine M is defined as a finite sequence of configura-

tions h0, h1, . . . , hk that M enters when computing w , starting with the configuration h0 = q0w

and ending with a halting configuration hk . A deterministic decider Turing machine M has ex-

actly one computation history for every input w [SIP97, p177].

There is no computation history if a Turing machine never halts. However, we are inter-

ested in all of the configurations a Turing machine enters during computation, whether or not

it eventually halts. We introduce the notion of a Turing machine computation trace to track

all of the configurations entered by a Turing machine on an input. If the Turing machine halts

on the input, the trace is equivalent to the computation history. However, if the machine does

not halt, the trace tracks the potentially infinite set of configurations entered by that machine.

We demonstrate in Appendix A that the language of all configurations in the computation trace,

denoted TRACE(M , w), is recursively enumerable and undecidable.

In situations where we need a decidable language of configurations, we define the notion

of a partial trace. A partial trace only tracks the computation of a Turing machine for a fixed

number of n steps, providing a snapshot of the full trace. If M halts in input w within n steps,

the partial trace ends with the halting configuration and is equivalent to the computation his-

tory. The language PARTIAL(M , w , n) of configurations in a partial trace is finite, and all finite

languages are decidable.

The trace and partial trace capture the configurations a Turing machine may enter on a sin-

gle input. We now turn our attention to the language of all configurations a Turing machine

may enter when computing any input. Specifically, we define the notion of a valid config-

uration as any configuration entered by a Turing machine M during computation. The lan-

guage VALID (M) of all valid configurations is recursively enumerable and undecidable.

29

§2.4.7 Set Notation

We use standard set notation and terminology, which we assume the reader is familiar with.

However, some set operations have multiple valid notations. We specify the notation we use in

this section, and provide some basic definitions for less common set operations.

We use the notation A \ B instead of the notation A − B to denote set difference. We use

the notation A 	 B to denote the symmetric difference of two sets, similar to the exclusive-or

operation A ⊕ B in logic. The symmetric difference is defined as:

A 	 B = (A \ B) ∪ (B \ A)

= (A ∪ B) \ (A ∩ B)

For a finite set of sets A = { A1, A2, . . . , An } where each A i ∈ A is a finite set of elements, we use

the following notation for union and intersection [ROS07, p127]:

⋃
A =

n⋃
i = 1

A i = A1 ∪ A2 ∪ · · · ∪ An

⋂
A =

n⋂
i = 1

A i = A1 ∩ A2 ∩ · · · ∩ An

We frequently use set-builder notation to define the elements of an infinite set. Specifically,

the notation { x : P (x) } refers to the unique set of all elements x such that the property P (x)

is true [VAU01, p7]. For example, the set of positive integers in set-builder notation is:

{ x ∈ Z : x > 0 }

We also reference the minimal set cover problem [COR03, p1033]. For a finite set A, we say

the set of subsets B covers A when:⋃
B = A

For example, let A = { a , b , c } and B = { { a }, { b , c }, { c } }. By taking the union of all the

subsets in B , we get the following:⋃
B = { a } ∪ { b , c } ∪ { c } = { a , b , c } = A

Notice, however, that B is not a minimal set cover of A. For a finite set A, we say that the set of

subsets B is a minimal set cover of A if removing any element of B breaks the set cover. In our

above example, the set C = { { a }, { b , c } } is a minimal set cover of A. The problem of finding

a minimal set cover, known as the set covering problem, is NP-complete [KAR72].

30

FIGURE 2.8: TREE TERMINOLOGY AND NOTATION

a

b c d

e f g

G = (N , E)where

N = { a , b , c , d , e , f , g }
E = { (a , b), (a , c), (a , d)

(b , e), (b , f), (d , g) }

Example tree G = (N , E). Some observations: Each node has a unique label. Node a is the root
node. Nodes a , b , and d are internal nodes. Nodes c , e , f , and g are leaf nodes. Node d is a
parent node to node g , and node g is a child node to d . Nodes e and f share the same parent
node b and are considered siblings.

§2.4.8 Graph Notation

We use standard graph notation throughout this dissertation. Informally, a graph is a set of

nodes connected together by edges. More formally, a graph G is defined as the pair (N , E)

where N is the set of nodes and E is the set of edges in G such that a pair (a , b) ∈ E indicates

node a ∈ N is connected to node b ∈ N . The union of two graphs G1 and G2 is defined as:

G1 ∪ G2 = (N1 ∪ N2, E1 ∪ E2)

We rely on trees, a special type of graph, to provide a hierarchical classification structure

for vulnerabilities. A tree is a connected, undirected, acyclic graph. A tree, unless otherwise

specified, contains a special root node which has no parents. A connected node which is closer

to the root is a parent node, and a connected node which is further from the root is a child

node. Nodes which have no children are leaf nodes, and all other nodes are internal nodes.

Nodes which share the same parent are siblings. See Figure 2.8 for a visual representation of

these terms. We use unordered trees in our work, which indicates the order of child nodes is not

significant. Furthermore, we use labeled nodes, which indicates each node has a unique label.

Specifically, if some node a has the same label as node b , then a and b refer to the same node.

We also refer to the graph of a function, which for a function f , is defined as the set of all

pairs (x , f (x)) [ROS07, p142]. This is not to be confused with the concept of a graph defined

above, which is a set of nodes and the edges connecting them.

31

CHAPTER 3

Security Policy

Security policy plays a fundamental role in this dissertation. In this chapter, we motivate our

policy-based approach and provide formal definitions for policy-related terminology.

§3.1 Introduction

Information and computer security focuses on protecting information and computer resources

from misuse. We generally assume the misuse of these resources results in a violation of their

confidentiality, integrity, or availability. However, exactly what constitutes misuse depends on

the resource and environment. For these specifics, we turn to the security policy.

A security policy specifies what is considered misuse by providing “a statement of what is,

and what is not, allowed” for a specific resource and environment [BIS03A, p9]. The method of

expression and level of abstraction at which security policies are expressed varies greatly, and

may not be explicitly defined at all. This inconsistency in expression is further aggravated by the

separation of a security policy and the security mechanisms that enforce that policy.

When a security policy is entirely unspecified, most general discussions of security assume

an implicit policy that focuses on protecting the confidentiality, integrity, and availability of a

resource. However, the explicit expression of a security policy makes clear what is considered

“misuse” and exposes gaps between what we want in an ideal sense, and what exists in a prac-

tical sense—providing powerful insight into where and why vulnerabilities occur. After all, it is

a security policy (implicit or explicit) that distinguishes vulnerabilities from software bugs. Both

cause a computer system to exhibit unintended behavior, but only vulnerabilities cause the sys-

tem to exhibit unintended behavior with security-related consequences.

For this reason, security policies provide the foundation for how we define, understand,

classify, and analyze vulnerabilities. We explain our policy-based approach in this chapter, which

32

provides a foundation for the entire Policy-Based Vulnerability Analysis Framework. We also

provide formal definitions for the policy terminology introduced in chapter 2, which we use

throughout the remainder of this dissertation.

§3.2 Policy-Based Approach

We take a hierarchical policy-based approach that separates intention from implementation in

this dissertation. We also take a different approach for formalizing policy at the state-machine

level, opting to define policy as a language of configurations instead of as a partition of states. We

motivate each of these choices next, before introducing our framework in the following chapters.

§3.2.1 Levels of Security Policy

As pointed out by Andrews and Whittaker, “[s]ecurity has guiding tenets, but context is every-

thing” [AND04]. Depending on the context, the scope and nature of a security policy varies. Vari-

ous laws and practices that regulate the actions of people influence organizational level security

policy [STE91]. This policy, in turn, influences the system level security policy, which regulates

the actions of user accounts and processes. However, a security policy at this level is limited

by the specific security mechanisms in place. Two different systems may fall under the same

organizational security policy, but have different system security policies.

As a result, the focus is usually on a security policy at a system-level. However, this obscures

the overall security of the resource. Consider a system placed in an unlocked room. The user

accounts on the system may be unable to delete a backup file, but anyone may enter the room

and destroy the physical hard drive. This system may be secure with respect to the system secu-

rity policy, but vulnerable with respect to the organizational security policy. The end result is a

vulnerable system, which is obscured if only the system security policy is considered.

Alternatively, consider a vulnerable system placed in a locked room with no Internet con-

nection. For example, the election software for counting votes is often installed on a stand-alone

commercial off-the-shelf (COTS) system located at the election headquarters. The underlying

COTS system may have vulnerabilities, but vulnerabilities in the election software cannot be

exploited remotely due to the physical isolation of the system. This illustrates how security pro-

cedures implemented at higher levels of abstraction may affect the overall security.

33

We capture access at different levels of abstraction with Attribute-Based Group Access Con-

trol (ABGAC), and illustrate how considering a security policy at different levels of abstraction is

able to model the insider problem [BIS08]. We gain a better understanding of the overall security

by considering these different levels of abstraction. Given these factors, we take a hierarchical

approach to defining security policy and vulnerabilities in chapter 4.

§3.2.2 Intention versus Implementation

Understanding the distinction between the intended security policy and the implemented se-

curity policy is critical to understanding where and why certain types of vulnerabilities exist.

For example, consider the gap between a security policy and the security mechanisms that en-

force it. As stated by Whitten and Tygar, “[s]ecurity mechanisms are only effective when used

correctly” [WHI99]. However, security mechanisms are notoriously difficult to configure cor-

rectly, especially as security policies become more complex and difficult to manage. For exam-

ple, a 2004 study of 37 actual firewall rule sets for 12 specific configuration errors found at least

one configuration error in every rule set [WOO04]. This is just one example of how the security

policy as configured on the security mechanisms may not accurately reflect the security policy

as intended by the administrators.

Organizations often have a dynamic set of security mechanisms protecting a dynamic set of

systems with a dynamic set of users. Even if a security mechanism properly enforces a security

policy, it is difficult to maintain the correctness of that security policy over time. In practice, we

cannot assume that the security polices in place are correct [SIN08]. The result is a disconnect be-

tween the stated security policy and the security policy as configured on the mechanisms [BIS06].

The security mechanisms themselves may contain bugs or vulnerabilities. As a result, the

security policy enforced may differ from the security policy as configured on the mechanism.

For example, consider the buffer overflow reported in the login command of UNIX version

6 [BIS09A]. Exploiting this vulnerability allowed users to authenticate as root and bypass the

configured access controls.

Furthermore, it may not be possible to fully implement the desired security policy. While

most systems can control the transfer of rights, they are not able to fully control the transfer

of information. For example, many systems are able to prevent the user account yasmin from

34

transferring the read privilege of a confidential report to the user account xander, but unable to

stop Yasmin from taking a snapshot of that report and giving a copy to Xander. This highlights

just one of the many technological constraints on system-based security mechanisms. Whereas

an ideal policy deals with information and people, this must be translated to system objects and

user accounts at a system-level in order to be implemented.

Each of these factors contribute to the gap between the intended security policy and the

implemented security policy. Capturing this distinction is essential to vulnerability analysis. An

action allowed by implementation but not intention represents a potential vulnerability. We

capture this distinction with the Policy-Based Vulnerability Hierarchy in chapter 4.

§3.2.3 Policy as a Partition

At the state machine level, security policy is formally defined as a partition of states. For example,

Bishop defines a security policy as, “a statement that partitions the states of the system into a set

of authorized, or secure, states and a set of unauthorized, or nonsecure, states” [BIS03A, p95].

Given a state machine with states Q , a security policy is the partition (A, Q \ A)where A ⊆ Q is

the set of authorized states and the set difference Q \ A is the set of unauthorized states.

Using this model, a state machine is considered secure if it “starts in an authorized state and

is unable to enter an unauthorized state” [BIS03A, p95]. Thus, if the unauthorized states are not

reachable from any authorized start state, then the state machine is secure. We can determine

if any unauthorized states are reachable from the start state by treating the state machine as a

directed graph. This is equivalent to the s -t connectivity (STCON) problem for directed graphs,

which can be solved using a sublinear-space, polynomial-time algorithm [BAR92].

However, the inverse is not true. A path from the start state to an unauthorized state does not

indicate the system is non-secure. It is possible that the unauthorized state is never entered on

any input, making it a useless state. A useless state may exist for a variety of reasons, including

issues with the system design, assumptions made about the operating environment, changes

made during maintenance, or due to code complexity. The decidability of determining if a state

is a useless state depends on the underlying state machine. While this problem is decidable for

a deterministic finite automaton (DFA) or push-down automaton (PDA), it is undecidable for

35

Turing machines [SIP97]. As a result, security based on a partition of states in a Turing machine

is undecidable.

This formalization of a security policy and system security is appropriate in a theoretical

environment. However, this approach is difficult to abstract to a practical level. For example,

assume we have a pre-existing Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr). Let the state qi ∈ Q

delete the remainder of the tape. Specifically, let the transition function δ include:

δ(qi , x) = (qi , t, R) where x 6= t

When state qi is entered on M , the Turing machine replaces any symbol x with the blank sym-

bol t until another blank symbol is encountered. Ideally, this delete action should only be au-

thorized if the correct password is provided at the start of the tape. Let w ∈ Σ∗ be the secret

password. How do we capture this security policy with a partition of states, and determine if M

satisfies this policy?

While awkward, we may be able to achieve this security policy by redesigning our system.

For example, we can split the state qi into an authorized state q ′i and unauthorized state q ′′i , and

update the transition function δ such that state q ′i is only reachable when w is on the tape. This

results in a new machine:

M ′ = (Q ′, Σ, Γ, δ′, q0, qa, qr) where Q ′ = (Q \ { qi }) ∪ { q ′i , q ′′i }

The security policy for M ′ may then be captured by a partition of states (A,Q \ A)where A is the

set of authorized states such that q ′i ∈ A and q ′′i 6∈ A.

This approach allows us to express a security policy for the new machine M ′, but not for

our pre-existing machine M . However, in practice, we often must express a security policy for a

pre-existing general purpose system, and determine whether that system is capable of meeting

our security requirements.

The redesign process itself is also troublesome. It is unreasonable to expect policy makers

to have the expertise required to redesign these systems, and equally unreasonable to expect

anyone to redesign a system each time a security policy changes. In practice, we may not even

have access to the source code and system designs necessary to perform these changes.

This formalization also assumes the implementation of the machine itself is bug-free. Con-

sider the earlier example, where we split qi into an authorized state q ′i and unauthorized state q ′′i .

In practice, the state qi may be reachable when the password w is not on the tape due to an im-

36

plementation bug. We are only able to say that state q ′i is authorized if we are able to prove it

is reachable only when w is on the tape. This is equivalent to the “Instantaneous Description

Problem” introduced in Appendix A, which is the unsolvable problem of determining if one con-

figuration is reachable from another [DEN96].

Instead, we seek a formal model of security policy that is influenced by practice. Specifically,

we focus on the scenario where we wish to express a system-specific security policy for a pre-

existing general purpose system, and evaluate the security of that system with respect to that

security policy. We expect the model to allow for the expression of a security policy without

redesigning the system, and to capture both what is authorized or unauthorized and when it is

authorized or unauthorized.

§3.2.4 Policy as a Language

Instead of defining a security policy for a Turing machine as a set of authorized states, we define

security policy as a language of authorized configurations. This approach allows us to consider

the contents of the tape when determining when a state should be authorized. Consider the

earlier example, where state qi is authorized only when the password string w is at the start of

the tape. We can express this as the regular language:

w Γ∗ qi Γ∗

We are still able to capture any security policy expressed as a partition of states. For example,

suppose we have a partition (A,Q \ A) where A ⊆ Q is the set of authorized states. We can

capture this partition with the regular language:

Γ∗ A Γ∗

We only capture those configurations that are authorized so far. In practice, it is important

to understand both what is authorized and what is unauthorized. We are able to derive the lan-

guage of unauthorized configurations using complementation. For example, the language of

unauthorized configurations for M may be expressed as:

w Γ∗ qi Γ∗

However, not all languages are closed under the complement operation. As a result, we restrict

the class of languages used for expressing authorized configurations to the decidable languages,

which are closed under the complement operation [SIP97, p149].

37

It is important to note that defining policy as a language is not the same as the notion of a

policy language. A policy language is defined as “a language for representing a security policy”

that may be high-level or low-level in nature [BIS03A, p104]. Policy languages in this sense at-

tempt to capture an abstract notion of a security policy in a way that is more precise than natural

languages but more understandable than machine languages. Consequently, a security policy

and a policy language are separate notions.

This formalization allows us to capture a security policy more naturally than a partition of

states. It does not require a system redesign to express a security policy for a pre-existing system,

and captures the concept of conditionally allowing states and actions based on the user input

and contents of the tape. We reflect this approach to formally defining a security policy in sec-

tion 3.3.5 when defining policy conditions.

§3.3 Terminology

We informally introduced the concept of a security policy and related terminology in chapter 2.

We provide formal definitions for these terms in this section, which serves as a foundation for

the Policy-Based Vulnerability Hierarchy in chapter 4.

§3.3.1 Policy Events

Recall from section 2.4.1 that a policy event is any event “of concern” to the policy makers. For-

mally, we define this as:

DEFINITION 3.1: A policy event is any subject, object, action triple E = (s , o, a)

such that policy maker(s) want to specifically enable or prevent subject s from

performing action a on object o.

For example, suppose the policy makers want to control whether the user yasmin is able to

perform the read action on the passwd file. The resulting policy event is:

E = (yasmin, passwd, read)

The response to any policy event must be consistent within a security policy to ensure the

repeatability of our analysis results later. However, there has been considerable work looking at

conditional or adaptive security policies, which dynamically change the security policy based on

certain conditions. Whether access may depend on the performance load of the system, rate of

38

requests by the user, or other environmental factors. The work on threat-adaptive security policy

is one example of this type of security policy [VEN97].

The response to a policy event as defined above may not always be consistent in a condi-

tional security policy. Instead, we capture these policies with conditional policy events, which

embed the conditions that must be met for a policy event to be authorized or unauthorized:

DEFINITION 3.2: A conditional policy event is the quadruple E = (s , o, a , b)

such that policy maker(s) want to specifically enable or prevent subject s from

performing action a on object o when the Boolean condition b is true.

For example, consider a security policy which authorizes Xander’s access to a detailed ter-

rain map based on a need-to-know condition. When Xander’s unit is under fire, an administrator

updates the unit status in the system. The resulting policy event may look like:

E = (Xander, map data, read, (UnitStatus(Xander) ≡ under_fire))

Any policy event may be also represented as an equivalent condition policy event by setting

the condition to true. For a policy event E = (s , o, a), the associated conditional policy event

is E ′ = (s , o, a , true). Therefore, we assume all policy events from this point forward are condi-

tional policy events. This allows us to maintain a consistent response while still capturing these

conditional policies.

We capture all of the policy events under consideration by the policy makers in the global

policy event space. Informally, the global policy event space is the universal set of policy events.

The most straightforward definition of the global policy event space is the set of all the policy

events under consideration by the policy makers. However, we must consider how this set is

formed or approximated in a practical setting. This approach forces the policy makers to act as

enumerators, listing a prohibitively large or possibly infinite number of policy events.

Instead, we break the problem into more manageable pieces by first defining the universal

sets of subjects, objects, actions, and Boolean conditions that are under consideration by the

policy makers. In some situations, we may be able to partially automate this task. For exam-

ple, many organizations maintain a list of current employees. Combined with the set of user

accounts present on the systems, we may be able to infer the universal set of subjects.

Using this approach, the global policy event space is the Cartesian product of these sets.

This approach may capture more policy events than necessary, but in most cases the number of

39

extra policy events captured will be negligible. More formally, we define the global policy event

space as follows:

DEFINITION 3.3: Let the sets S, O, A, and B be the universal sets of subjects,

objects, actions, and Boolean conditions under consideration by the policy

maker(s). The global policy event space is the Cartesian product:

E = S× O× A× B

We do not limit the universal sets to system-defined subjects, objects, actions, or Boolean

conditions. For example, the universal set of subjects may contain both the user Yasmin and the

user account yasmin. Also, the universal sets do not need to be mutually exclusive. For example,

a process may be considered both a subject and an object. If the security policy is not conditional

or adaptive, the universal set of Boolean conditions is simply B = { true }.

§3.3.2 Policy Responses

The next step is to identify whether a policy event is authorized or unauthorized. This is indi-

cated by the policy decision for that policy event:

DEFINITION 3.4: A policy decision is any decision d ∈ D such that:

D = { yes, no }

Ideally, a security policy should be unambiguous and conflict-free. However, this is rarely

the case in practice. A straightforward yes or no decision is not always possible for a policy event.

For example, we may be unable to determine at the polling place whether a voter is eligible to

vote in a particular precinct. As a result, whether the voter may cast a ballot is unknown and a

provisional ballot must be provided. We define the notion of a policy response to handle these

situations. Unlike a policy decision, a policy response may be unknown, indicating that we are

unable to determine whether the policy event should be authorized. Formally:

DEFINITION 3.5: A policy response is any response r ∈ R such that:

R = { yes, no, unknown }

Since D ⊆ R , every policy decision d ∈ D is also a policy response d ∈ R . The exact mean-

ing of a policy response depends on the level of abstraction. For example, there is a subtle differ-

ence between a policy event that should be authorized versus one that is allowed.

40

§3.3.3 Policy Statements and Sets

Recall from section 2.4.1 that a security policy is informally defined as “a statement of what is,

and what is not, allowed” [BIS03A, p9]. A policy event alone does not provide enough informa-

tion. We must associate policy responses with a policy events to capture a security policy. We

use a policy statement to associate a policy response with an individual policy event:

DEFINITION 3.6: A policy statement is the pair S = (E , r)where r ∈ R is the

policy response for the policy event E ∈ E.

Conceptually, a security policy is a set of policy statements. However, it is possible to have

two conflicting policy statements within a set. For example, consider the set:

{ (E , yes), (E , no) }

This set indicates that the policy event E should be both authorized and unauthorized, which

is non-determinate. We capture this with the notion of a policy conflict, which occurs whenever

two statements have different policy responses for the same policy event. Formally:

DEFINITION 3.7: Two policy statements Si = (E i , ri) and S j = (E j , rj) are

in conflict if and only if E i = E j and ri 6= rj . A set of policy statements is

conflict-free if and only if every pair of statements in that set is conflict-free.

By definition, a conflict-free set of policy statements has only one policy response for each

policy event. We call such sets policy sets. Formally:

DEFINITION 3.8: A policy set is the conflict-free set of policy statements:

P = { (E , r) : (E , r) is a policy statement and E is unique }

A policy set captures a security policy at a specific level of abstraction. While policy state-

ments within a policy set must be conflict-free, statements across policy sets at different levels of

abstraction may conflict. We explore this further in chapter 4.

§3.3.4 Policy Properties

In addition to being conflict-free, a policy set should be precise, complete, and unambiguous.

We informally introduced these properties in section 2.4.2. We use the global policy event space

to formally define these properties for a policy set in this section.

41

Recall that a policy is considered precise when it has the level of granularity necessary to

capture all policy events. We formally define this as:

DEFINITION 3.9: A policy set P is precise with respect to the global policy event

space E if and only if for all policy events E ∈ E, there exists a policy state-

ment S ∈ P such that S = (E , r) for some policy response r .

This formally defines the precision of the policy set with respect to the global policy event space.

However, it is possible to have an imprecise global policy event space. For the purpose of this

dissertation, we assume the global policy event space itself is precise.

Policy statements may include unknown policy responses. We say a policy set is complete

when each policy event in the set is associated with a policy decision. Formally:

DEFINITION 3.10: A policy set P is complete if and only if for all statements

S ∈ P , we have S = (E , d) for some policy decision d .

Notice that completeness as defined above does not depend on the global policy event

space. Ideally, we want a policy set that is both precise and complete. When both properties

hold, we call the policy set unambiguous:

DEFINITION 3.11: A policy set P is unambiguous with respect to the global

policy event space E if and only if for all policy events E ∈ E, there exists a

policy statement S ∈ P such that S = (E , d) for some policy decision d .

It is possible to have a policy set which is unambiguous but incorrect. Unfortunately, defin-

ing correctness for a policy set is more complicated. We must be able to capture the intent of

the policy makers to determine if a policy set is correct. For this, we turn to the Policy-Based

Vulnerability Hierarchy in chapter 4.

§3.3.5 Policy Conditions

The terminology discussed so far is non-specific to any underlying system or security mecha-

nism. We use Turing machines as a system model when discussing policy in a theoretical setting.

At this level of abstraction, we represent security policy using policy conditions, which captures

security policies as a language of authorized configurations. Formally:

42

DEFINITION 3.12: Given a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), a pol-

icy condition is a decidable language of configurations:

{ u qv : u qv is an authorized configuration on M }

Conceptually, a policy condition captures a single policy statement. A security policy gen-

erally consists of more than one policy statement. We capture this with the notion of a policy

condition set:

DEFINITION 3.13: Given a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), a pol-

icy condition set is a union of a nonempty finite set of policy conditions.

A policy condition and policy condition set are both languages of authorized configurations

and may be viewed as being theoretically equivalent. However, in practice, this conceptual sepa-

ration captures how security policies are created. Using this formalization, we capture a security

policy as follows:

DEFINITION 3.14: Given a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), a se-

curity policy for machine M is a Turing machine P such that L(P) is a policy

condition set.

Since decidable languages are closed under the union and complement operations, the lan-

guage L(P) is decidable and the Turing machine P will always halt [SIP97, p149]. However, we

demonstrate in Appendix A that the language of valid configurations for a Turing machine is

undecidable. As a result, this approach only captures a subset of possible security policies.

Recall from section 3.2.3 that some security policies at a state machine level are captured as

a partition of states. Given a partition (A,Q \ A), we capture this type of policy as follows:

L(P) = Γ∗ A Γ∗

In this example, any state q ∈ A is considered authorized, no matter what is on the tape. This

brings us to a special type of policy condition:

DEFINITION 3.15: Given a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), a state

condition is any policy condition that does not depend on the current contents

of the tape.

This allows us to capture unrestricted portions of the Turing machine. For example, we may

intend to always authorize the start and accept states. Let ◦ denote the concatenation operation.

43

We capture this as the state condition:

{ u qv : u ◦ v ∈ Γ∗ and q ∈ { q0, qa } }

We also define a type of policy condition which is not dependent on a state. Specifically, we

define tape conditions, which are based on the content stored on the tape during computation:

DEFINITION 3.16: Given a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), a tape

condition is a policy condition that does not depend on the current state or

position of the read head.

This types of condition may be useful when dealing with sensitive information that should

not appear on the tape. For example, suppose we never want a secret string w to appear on the

output tape of an enumerator. We can capture this with the tape condition:

{ u qv : u ◦ v 6∈ Γ∗ w Γ∗ }

We can use mixed conditions to make security policy decisions based on the language of the

Turing machine. For example, suppose we never want our machine to accept with substring w

on the tape. We can capture this by creating a security policy concerned only with the accepting

configurations of M :

{ u qav : u ◦ v 6∈ Γ∗ w Γ∗ }

This captures security policy at a theoretical system-level, but we know from section 3.2.1

that other levels of security policy exist. We discuss these levels next in chapter 4.

44

CHAPTER 4

Policy-Based Vulnerability Hierarchy

This chapter introduces the Policy-Based Vulnerability Hierarchy, which defines a hierarchy of

vulnerabilities based on the gaps between security policies at different levels of abstraction. We

use this policy-based notion of a vulnerability throughout the remainder of this dissertation.

This work extends the “Unifying Policy Hierarchy” by Carlson [CAR06] introduced in chapter 2.

§4.1 Introduction

Before we are able to provide a policy-based vulnerability analysis framework, we must provide

a policy-based notion of a vulnerability. However, as we discuss in chapter 3, we need a model of

security policy that captures the difference between intention versus implementation at multiple

levels of abstraction. We address this with the Policy-Based Vulnerability Hierarchy, which is the

first component of our vulnerability analysis framework.

We begin by defining security policies at four levels of abstraction: ideal, feasible, config-

ured, and instantiated. This approach separates intention, which is captured at the higher levels

of the hierarchy, from implementation, which is captured at the lowest level of the hierarchy. We

use this hierarchy of security policies to define three types of vulnerabilities: inherent, configu-

ration, and implementation.

The focus of this dissertation is on implementation vulnerability analysis. However, we

demonstrate how we may use the Policy-Based Vulnerability Hierarchy to perform high-level

vulnerability analysis with an insider threat case study.

§4.2 Policy Hierarchy

We introduce the policy hierarchy in this section, which provides the foundation for the vulner-

ability hierarchy in section 4.3.

45

§4.2.1 Policy Oracle

We first introduce the notion of a policy oracle. We use the term oracle here similar to how the

term random oracle is used in cryptography or the term oracle Turing machine is used in com-

putability theory [SIP97, p211]. A policy oracle is an all-knowing entity represented as a function

that maps queries to responses. We initially treat a policy oracle as a black box and make no

assumptions as to how the oracle arrives at the policy response. Formally:

DEFINITION 4.1: A policy oracle is the function P : E → R that is always able

to provide a consistent response to any query.

A policy oracle, being a function, associates exactly one policy response with every policy event

and never changes its response to a query. The graph† of an oracle P is defined as the set of

all statements (E ,P (E)). These statements will be conflict-free due to the consistent response

returned by the oracle. As a result, the graph ofP is a policy set that is precise with respect to the

global policy event space, but may be incomplete.

Whereas precision and completeness are defined with respect to the global policy event

space, we define the correctness of a policy set with respect to a policy oracle. Informally, we

say a policy set is correct when the policy responses in all of the policy statements equal those of

the oracle. Formally, we define this as:

DEFINITION 4.2: A policy set P is correct with respect to a policy oracle P if

and only if for all statements S ∈ P , S = (E ,P (E)).

We consider the policy set associated with a policy oracle to be correct by definition, but in prac-

tice this depends on our approximation of the oracle function.

We determine whether a security policy is correct by comparing it to policy oracles at differ-

ent levels of abstraction. These levels of abstraction separate events allowed by intention from

those events allowed by implementation. We define these specific policy oracles next.

§4.2.2 Ideal Oracle

The ideal oracle captures the “ideal” or “perfect” policy as envisioned by the policy makers. The

ideal oracle provides a policy decision for every policy event in the global policy event space:

† Recall from section 2.4.8 that the graph of a function f is the set of all pairs (x , f (x)).

46

DEFINITION 4.3: The ideal oracle is a policy oracle Pid : E → D where E is

the global policy event space and D is the set of all policy decisions such that:

Pid(E) =
{
yes if E should be authorized
no if E should be unauthorized

The ideal policy is the policy set associated with the graph of Pid.

The ideal oracle is able to reason about policy events involving people and information, in

addition to policy events involving user accounts and system files. For example, ideally Yasmin

is the only user authorized to authenticate to the user account yasmin on the system. The ideal

oracle reflects this as follows:

Pid (Yasmin, yasmin, authenticate, true) = yes

For this to be true with password-based authentication systems, Yasmin must also be the only

person authorized to acquire that password. Specifically:

Pid (Yasmin, Yasmin’s password, acquire, true) = yes

Pid (Xander, Yasmin’s password, acquire, true) = no

The organization’s security policy may include additional requirements to ensure this holds,

such as requiring users to use strong passwords, to never write down passwords, and to never

share their passwords with others.

The ideal oracle always provides a yes or no policy decision for every policy event, making

it unambiguous (both precise and complete). The ideal oracle accurately captures the intent of

the policy makers. Therefore, a policy set or statement that is correct with respect to the ideal

policy oracle represents exactly the intent of the policy makers.

The unambiguity of the ideal oracle is important to our analysis framework. However, the

intent of the policy makers is not always explicitly or precisely expressed in practice. We must

approximate the Pid function in practice by querying actual policy makers. Whether the ideal

oracle remains unambiguous in practice depends on the correctness and consistency of this

approximation.

For these reasons, we limit the scope of the global policy event space to stable environments

with well-defined security requirements. If we are unable to resolve unknown policy events in our

approximation of the ideal oracle, we drop those policy events from the global policy event space.

47

FIGURE 4.1: POLICY HIERARCHY

Policy Oracle Subdomain Decision Type

Pid : Ideal All Events Authorized (Ideally)
Pfe : Feasible System-Definable Authorized (Realistically)
Pco : Configured System-Defined Allowed (By Configuration)
Pin : Instantiated All Events Possible (By Implementation)

The policy hierarchy, consisting of four policy oracles defined at different levels of abstraction.
Each oracle provides a different type of decision for a specific subdomain. For example, the
configured oracle determines what is allowed by configuration for all system-defined events.

§4.2.3 Feasible Oracle

The ideal policy oracle represents an ideal which cannot be implemented precisely due to tech-

nological, procedural, environmental, or practical constraints. For example, an embedded sys-

tem with limited performance capability and memory capacity may be unable to provide the

ideal level of security. The feasible oracle captures the compromises made to achieve a practical

and realistic security policy, and may be considered a subset of what is actually enforceable given

the security mechanisms in place. We formally define this oracle as follows:

DEFINITION 4.4: The feasible oracle is a policy oracle Pfe : E→ R where E is

the global policy event space and R is the set of all policy responses such that:

Pfe(E) =

 yes if E is authorized (realistically)
no if E is unauthorized
unknown if E is infeasible to determine

The feasible policy is the policy set associated with the graph of Pfe.

The feasible oracle must provide a policy set for each mechanism being considered in our

environment. For example, if we have two mechanisms being considered, there will be two pol-

icy subsets in the feasible policy. This allows us to address specific security mechanisms while

still considering multiple systems in our environment.

Unlike the ideal oracle, the feasible oracle may be unable to provide a decision for every

event. The feasible oracle must return an unknown response for any event that is undefined by the

security mechanism. For example, we want to ideally prevent Xander from acquiring Yasmin’s

password. However, systems only understand user accounts, not the actual users themselves.

We also have no way to determine whether Xander is able to acquire this knowledge. Therefore:

Pfe (Xander, Yasmin’s password, acquire, true) = unknown

48

Alternatively, consider a physical security system that controls access to a control room via

special ID badges. Suppose Xander is assigned badge ID #14, and should not be authorized to

enter the control room. At an ideal level:

Pid (Xander, control room, enter, true) = no

Pid (bid:14, control room, enter, true) = no

While this security mechanism is able to recognize the badge ID #14 assigned to Xander, the

person Xander is undefined by this security mechanism. Therefore, at a feasible level:

Pfe (Xander, control room, enter, true) = unknown

Pfe (bid:14, control room, enter, true) = no

Certain environments may even force the policy administrators to violate the ideal oracle

policy with the feasible oracle policy. Consider security policies for electronic medical records at

a hospital [AND96]. Ideally, we may only want doctors to have access to medical records for the

patients at the hospital that they are currently treating. However, due to the time-critical nature

of treating patients and the complexity of tracking interacting providers, the policy makers may

decide to compromise and allow access to any provider at the hospital, but log each access for

later review [PEI07C, p133] [BISAR, §5].

Theoretically, the feasible policy is precise but not complete. The feasible oracle still cap-

tures the intent of the policy makers; a policy set or statement that is correct with respect to Pfe

reflects the intentional compromises made by the policy makers from the ideal policy. An ap-

proximation of the feasible oracle should still be precise and complete in practice, but it is pos-

sible to misrepresent the intent of the policy makers in our approximation. We may query the

policy makers directly to ensure an accurate approximation, or infer the feasible oracle in cases

where the organization uses a high-level policy language.

The feasible oracle captures intent at a practical level rather than at an ideal level. However,

it is possible that the intended security policy may not match the policy as configured on the

security mechanisms. We capture this with the configured policy oracle in the next section.

§4.2.4 Configured Oracle

Whereas the feasible oracle provides what is authorized in practice, the configured oracle pro-

vides what is allowed by the configuration of the security mechanism. Formally:

49

DEFINITION 4.5: The configured oracle is a policy oraclePco : E→ R whereE

is the global policy event space and R is the set of policy responses such that:

Pco(E) =

 yes if E is allowed (by configuration)
no if E is disallowed
unknown if unable to determine

The configured policy is the policy set associated with the graph of Pco.

Consider the physical security example from before. Suppose a typographical error occurs

when configuring the system, and badge ID #14 is allowed access to the control room. As a result:

Pfe (bid:14, control room, enter, true) = no

Pco(bid:14, control room, enter, true) = yes

In both theoretical and practical settings, the configured oracle is precise and incomplete.

We may approximate this oracle by inspecting the actual configurations on each security mech-

anism, which may be automated in some cases. As a result, it is possible to achieve an accurate

approximation of the configured oracle. We illustrate how to perform this approximation for an

access control matrix in Appendix B. However, depending on the number of interoperating secu-

rity mechanisms present in the environment, this process may still be complex. There has been

work on how to capture the configured policy in more complex environments [BIS06, CHU01].

In some sense, a policy set or statement that is correct with respect to the configured oracle

captures the intent of the security mechanism and its designers. Unfortunately, these mech-

anisms are difficult to configure and manage as the size and complexity of the security policy

increases. The result is a configured policy which is not correct with respect to the feasible pol-

icy. This is compounded by issues with the implementation of the security mechanism itself,

which is captured by the instantiated oracle in the next section.

§4.2.5 Instantiated Oracle

A security mechanism may not accurately enforce the security policy as configured on the system

due to bugs, errors, flaws, faults, or incorrect assumptions in the implementation or design of the

mechanism. We capture what is actually enforced by the mechanism with the instantiated policy

oracle. We formally define this policy oracle as:

50

DEFINITION 4.6: The instantiated oracle is a policy oracle Pin : E → R

where E is the global policy event space and R is the set of all policy responses

such that:

Pin(E) =
{
yes if E is possible (by implementation)
no if E is impossible

The instantiated policy† is the policy set associated with the graph of Pin.

Due to the misconfiguration captured by the configured oracle, Xander’s badge is allowed to

open the control room. Although Xander should not be allowed to enter the control room, the

instantiated oracle captures that it is possible for him to enter the room as a result:

Pid (Xander, control room, enter, true) = no

Pin (Xander, control room, enter, true) = yes

The instantiated oracle captures the difference between policy events allowed by intention

at the higher levels of the hierarchy, and those allowed by implementation of the security mecha-

nism. Specifically, a yes response from the ideal oracle indicates what we want to be authorized,

whereas a yes response from the instantiated oracle indicates what is possible. In theory, the

instantiated oracle is unambiguous like the ideal policy oracle and never returns an unknown

response for any policy event.

However, the instantiated oracle is one of the most difficult oracles to accurately approxi-

mate for an actual system. If we were able to easily determine when the implementation does

not properly enforce its configuration, the area of vulnerability analysis would not be so daunt-

ing. As we know from previous decidability results, it is easier to verify what is possible than to

prove what is impossible. Therefore, in practice, this oracle is largely incomplete until a specific

event is demonstrated.

There is no notion of correctness for the instantiated oracle, since the instantiated oracle

does not reflects intent. Instead, we consider policy statements at this level of abstraction and

determine whether they are correct with respect to other policy oracles. We capture this with the

notion of policy violations in the next section.

† The instantiated policy is not a security policy strictly speaking. It is a description of an implementation that ac-
counts for any bugs or vulnerabilities present in the security mechanism.

51

§4.3 Vulnerability Hierarchy

In an ideal world, each level of the policy hierarchy would be identical. Specifically:

∀E ∈ E Pid(E) ≡ Pfe(E) ≡ Pco(E) ≡ Pin(E)

However, reality does not reflect this. The separation of policies into different levels of abstrac-

tion highlights where and why certain vulnerabilities occur. We use the policy hierarchy to define

several types of vulnerabilities in this section, after we formalize the notion of a policy violation.

§4.3.1 Policy Violations

Recall from Definition 3.7 that two policy statements conflict if they have different policy re-

sponses for the same policy event. We can use this notion to detect when different levels of

the policy hierarchy conflict. For example, suppose Pid(E) = no and Pin(E) = yes. The two

statements (E ,Pid(E)) and (E ,Pin(E)) conflict, resulting in a policy violation between the two

oracles. Specifically, we define a policy violation as follows:

DEFINITION 4.7: A policy violation occurs whenever Pi (E) 6= Pj (E) for two

different policy oracles Pi ,Pj in the policy hierarchy.

There are several different types of policy violations, depending on the oracles and the type

of policy responses involved in the conflict. Informally, an unequivocal violation is a policy vio-

lation where the conflict is between two policy decisions. Formally:

DEFINITION 4.8: An unequivocal violation is a policy violation between two

different policy oracles Pi ,Pj such that Pi (E) ∈ D and Pj (E) ∈ D for a

policy event E and the set of policy decisions D.

With an unequivocal violation, one policy oracle returns yes whereas the other returns no

(or visa versa). These policy violations represent a clear and unequivocal conflict between the

two levels of policy. For example:

Pfe (bid:14, control room, enter, true) = no

Pco(bid:14, control room, enter, true) = yes

Sometimes the policy violation is more vague. Whereas unequivocal violations only involve

policy decisions, an equivocal violation occurs when exactly one of the responses is unknown:

52

DEFINITION 4.9: An equivocal violation is a policy violation between two dif-

ferent policy oraclesPi ,Pj such thatPi (E) 6= unknown andPj (E) = unknown

for a policy event E .

An equivocal violation indicates that there may be an unequivocal violation elsewhere in

the hierarchy, but this is not always the case. For example, the following is an equivocal violation

between the ideal and feasible oracles:

Pid (Xander, control room, enter, true) = no

Pfe (Xander, control room, enter, true) = unknown

We already know that the system was misconfigured such that Xander’s badge is able to open

the control room door. Therefore, at an instantiated level, Xander is able to enter the room. The

result is an unequivocal violation between the ideal and instantiated oracles:

Pid (Xander, control room, enter, true) = no

Pin (Xander, control room, enter, true) = yes

However, if the physical security system is properly implemented and configured, then the con-

figured and instantiated oracles will return no. Despite the fact that an equivocal policy violation

exists elsewhere in the hierarchy, there is no unequivocal policy violation in this case.

When two oracles both return unknown policy responses, there is no direct policy violation.

However, this does indicate that a policy violation exists elsewhere in the hierarchy. For example,

since the physical security system is only able to respond to badges and not people, both the

feasible and configured oracles return unknown below:

Pfe (Xander, control room, enter, true) = unknown

Pco(Xander, control room, enter, true) = unknown

As we saw in the earlier examples, this event causes both an unequivocal and equivocal violation

elsewhere in the hierarchy. We define indirect policy violations to capture this:

DEFINITION 4.10: An indirect violation occurs between two oracles Pi ,Pj

such that Pi (E) = unknown and Pj (E) = unknown for a policy event E .

The only two oracles that return unknown responses are the feasible and configured oracles.

Since the ideal and instantiated oracles never return an unknown response, we know there exists

exactly two equivocal violations whenever we find an indirect violation. As we discussed earlier,

there may or may not be an associated unequivocal violation elsewhere in the hierarchy.

53

FIGURE 4.2: EX AMPLE POLICY VIOL ATIONS AND VULNERABILITIES

Pid (Xander, control room, enter, true) = no

Pfe (Xander, control room, enter, true) = unknown

Pco(Xander, control room, enter, true) = unknown

Pin (Xander, control room, enter, true) = yes

Pid (bid:14, control room, enter, true) = no

Pfe (bid:14, control room, enter, true) = no

Pco(bid:14, control room, enter, true) = yes

Pin (bid:14, control room, enter, true) = yes

equivocal

indirect

equivocal

configuration

unequivocal

absolute

Policy violations (top) and vulnerabilities (bottom) for two example policy events.

Whether or not a vulnerability exists elsewhere in the hierarchy, equivocal and indirect vio-

lations provide valuable insight. These violations indicate that the security mechanisms in place

are unable to restrict a particular policy event. Either such a security mechanism does not exist

at this level of abstraction, or the mechanism required has not been installed or purchased for

various reasons. Elucidating why these types of policy violations exist may help determine when

additional procedures are necessary to mitigate the risk associated with those violations.

Both equivocal and indirect violations indicate there is a potential problem elsewhere in a

hierarchy, but only unequivocal violations represent a direct threat. We assume that if an equiv-

ocal or indirect violation is encountered, additional analysis will be done to determine whether

the policy event results in an unequivocal violation elsewhere in the hierarchy. Therefore, we

only consider unequivocal violations in our policy-based definition of a vulnerability. Specifi-

cally, we define a vulnerability as follows:

DEFINITION 4.11: A vulnerability is the set of conditions that enable an un-

equivocal policy violation.

Informally, a vulnerability causes or enables a policy violation. For example, consider the

login vulnerability mentioned earlier [BIS09A]. That buffer overflow enables the user to bypass

the configured access controls, causing several policy violations. We leave the concept of a “con-

dition” as a primitive for now, and expand on this notion in the next chapter.

We form the vulnerability hierarchy by examining unequivocal violations between consec-

utive levels of the policy hierarchy. This results in three levels of vulnerabilities, as illustrated in

Figure 4.3. We discuss each of these vulnerability types further in the following sections.

54

§4.3.2 Inherent Vulnerabilities

An inherent violation is associated with policy violations that occur at the most abstract levels

of the policy hierarchy. These policy violations come from the intentional compromises made

considering the security mechanisms and non-security requirements in place. Formally:

DEFINITION 4.12: An inherent violation occurs for a policy event E when-

ever Pid(E) 6= Pfe(E).

Therefore, inherent vulnerabilities are at the top of the Policy-Based Vulnerability Hierarchy:

DEFINITION 4.13: A inherent vulnerability is a vulnerability that enables an

unequivocal inherent policy violation.

For example, consider the use of Voter Verified Paper Audit Trails (VVPATs) in electronic

voting. These paper audit trails allow voters to verify his or her vote, and provide a means for a

hand recount should problems occur with the electronic record. However, these paper trails are

often recorded sequentially on a single roll of paper. The use of VVPATs illustrates an intentional

trade-off between vote verifiability and voter privacy [HAL08].

We can identify these trade-offs with inherent vulnerability analysis. These vulnerabilities

often indicates where the functionality, configuration, manageability, or usability of a security

mechanism may be improved. As a result, this type of analysis provides a “big picture” of how

capable the systems and security mechanisms are at addressing the ideal set of security require-

ments. However, some inherent policy violations may not be avoided. For example, consider the

subset of security policies called enforceable security policies introduced in section 2.3.1 [SCH00].

This work captures those policies that may be enforced by certain security mechanisms. For

some security policies, no enforcement mechanism exists—guaranteeing a gap between the

ideal and feasible policy oracles.

§4.3.3 Configuration Vulnerabilities

Vulnerabilities that enable policy violations between the feasible and configured oracles are

called configuration vulnerabilities. These vulnerabilities indicate that the security policy as con-

figured on the security mechanisms is incorrect, i.e., it does not match the intention of the policy

makers. Formally:

55

DEFINITION 4.14: A configuration violation occurs for policy event E when-

ever Pfe(E) 6= Pco(E).

DEFINITION 4.15: A configuration vulnerability is a vulnerability that enables

an unequivocal configuration policy violation.

These vulnerabilities are often the result of misconfiguration. A general purpose system or

security mechanism must be configured to match the environment and feasible security policy

by an individual, which introduces the possibility of human error. However, simple human error

does not explain the prevalence of these vulnerabilities. As we point out in section 3.2.2, cor-

rectly configuring a security policy on these security mechanisms is often complex and difficult

to manage. Even if we start with a correct configuration, the rate of change at many organiza-

tions impedes the ability of the administrators to correctly manage that configuration. In some

cases, this situation may be improved by increasing the usability of access controls [BEZ09].

Misconfiguration is not the only underlying cause of configuration policy violations in prac-

tice. It is possible that the feasible policy is not well-defined or properly articulated, making it

difficult to accurately approximate this oracle. There are numerous high-level policy languages

capable of articulating a security policy at the feasible level, many of which are highlighted by

Alm and Drouineaud [ALM06].

We may choose to focus on configuration vulnerability analysis to identify misconfigura-

tion, improve the configured policy, identify security mechanisms that are difficult to configure

or maintain, or to determine where the expression of the feasible policy must be better articu-

lated. Significant research has been done in this area. For example, see the research done by

Wool [WOO04], Bishop and Peisert [BIS06], Sakaki et al. [SAK06], Yuan et al. [YUA06], and by

Ramakrishnan and Sekar [RAM02].

§4.3.4 Implementation Vulnerabilities

Finally, implementation vulnerabilities enable policy violations between the configured and in-

stantiated oracles. This captures the traditional notion of a vulnerability at a system level, and

indicates that the implementation of a security mechanism is not properly enforcing the desired

security policy. Formally:

56

DEFINITION 4.16: An implementation violation occurs for a policy event E

whenever Pco(E) 6= Pin(E).

DEFINITION 4.17: A implementation vulnerability is a vulnerability that en-

ables an unequivocal inherent policy violation.

These vulnerabilities are often caused by software bugs that enable a user to bypass the in-

stalled security mechanisms. These are often unintentional mistakes made by developers, such

as failing to sanitize user data or check the bounds of a buffer. When these occur in conjunction

with other conditions, these vulnerabilities may be exploited to either change how the security

mechanism enforces the configured policy, or the actual configuration itself. The buffer overflow

vulnerability in the Unix login process is a perfect example of an implementation vulnerability.

However, not all of these vulnerabilities are caused by unintentional errors in implementa-

tion. For example, with a little guesswork, users of the Sequoia WinEDS client version 3.1.012 for

administrating an election are able to bypass all of the access restrictions in place by WinEDS and

directly manipulate the underlying Microsoft SQL database [BLA07, §4.1.1]. This is not a result

of an unintentional software bug; it is the (possibly unintentional) consequence of intentional

choices made in the software design.

Implementation vulnerability analysis identifies where the implementation of a security

mechanism fails to enforce the configured policy. This is important to understanding where

our assumptions of security are incorrect, such as assuming that an underlying database may

not be improperly manipulated. Even in situations where a fix to the implementation is not

immediately available, we are often able to mitigate the threat represented by these vulnerabil-

ities. Consider the above example, which illustrates the importance of physically securing and

restricting access to the systems involved in an election. We focus on this type of vulnerability

analysis with the Policy-Based Vulnerability Analysis Framework.

§4.3.5 Absolute Vulnerabilities

The focus thus far has been on unequivocal violations between consecutive levels of the policy

hierarchy. However, we may gain some insight from policy violations between non-consecutive

levels of the policy hierarchy. Specifically, we may be interested when the ideal oracle does not

57

FIGURE 4.3: VIOL ATION AND VULNERABILITY HIERARCHY

Vulnerability Violation Causes

Inherent Pid (E) 6= Pfe (E) Practical Constraints
Configuration Pfe (E) 6= Pco(E) Configuration Errors
Implementation Pco(E) 6= Pin (E) Implementation Flaws

The policy violation and vulnerability hierarchy. Illustrates the policy violation associated with
each vulnerability, and the most likely causes for the violation.

match the instantiated oracle. An unequivocal policy violation between these two levels repre-

sents an absolute vulnerability, indicating that the policy we want does not match the policy we

have. Formally:

DEFINITION 4.18: An absolute vulnerability is a vulnerability that enables an

unequivocal policy violation such that Pid(E) 6= Pin(E).

Consider our earlier example. The badge system is misconfigured, allowing Xander’s badge

to open the control room door. Even though Xander is not authorized at an ideal level, he is

allowed to enter the room at a instantiated level. As a result, an absolute vulnerability exists:

Pid (Xander, control room, enter, true) = no

Pin (Xander, control room, enter, true) = yes

The ideal and instantiated oracles are difficult to accurately approximate in practice. As a

result, a comparison between these oracles should only happen when absolutely necessary.

§4.4 Case Study: Insider Threat

Our focus in this dissertation is on developing a framework for implementation vulnerability

analysis, but we are able to use the Policy-Based Vulnerability Hierarchy directly for high-level

vulnerability analysis. We demonstrate this with an insider threat analysis case study.

We generalize the access-based approach of our prior work on the insider threat as a basis

for this case study [BIS08, BIS09B, BISAR]. This work states that the insider threat “exists whenever

someone has more authorized privileges at a lower policy level than at a higher policy level.” The

gap between different levels of policy exposes where there is a potential for abuse by an insider,

and the size of this gap illustrates the “insiderness” of the individual.

We demonstrate our approach for insider threat analysis with a hypothetical election pro-

cess case study. We begin with a naïve set of security policies and procedures, and use the Policy-

58

Based Vulnerability Hierarchy to explain how these policies and procedures may be improved to

reduce the insider threat.

Suppose a small county acquires new voting systems to improve accessibility and reduce

the number of ballots invalidated due to overvotes or stray marks. Under the new system, a

voter makes his or her selections on an electronic touch screen device. This device prints those

selections onto a paper ballot, which is deposited by the voter into a ballot box. At the end of the

day, the poll workers deliver the ballot boxes to the election headquarters for counting.

The county has several rural polling places, and must deliver all of the necessary equipment

and supplies to the polling places several days prior to the election. One of these polling places is

a high school, which keeps this equipment in a locked storage room. Some bystanders, such as

administrators and staff members, have the key to this storage room to access school supplies.

We add additional details to this process as necessary to illustrate our analysis approach.

Instead of performing an analysis on the entire election process, we focus on the demonstrating

the “insiderness” of any bystanders that have access to the election equipment storage room.

§4.4.1 Approach

We begin with a preparation phase, which identifies the scope of the global policy event space.

This includes identifying the systems, security mechanisms, and users in the environment. How-

ever, enumerating the universal subject, object, and action sets may be impractical in a realistic

environment. We approximate the global policy event space in practice with special classes and

define policy events based on those classes, instead of individual subjects or objects.

The next step is to identify the set of privileges that may be misused by an insider. Two types

of primitive actions may be performed by an insider: the violation of a policy using authorized

access, and the violation of a policy by obtaining unauthorized access [BIS08]. We focus on the

first type of violation, where an insider misuses access authorized at a lower level of policy to

violate a higher level of policy. There are four types of vulnerabilities to consider:

1. Implementation vulnerabilities such that Pin (E) = yes and Pco(E) = no

2. Configuration vulnerabilities such that Pco(E) = yes and Pfe (E) = no

3. Inherent vulnerabilities such that Pfe (E) = yes and Pid (E) = no

4. Absolute vulnerabilities such that Pin (E) = yes and Pid (E) = no

59

We omit any implementation vulnerabilities from this example insider threat analysis, as they

are addressed by the Policy-Based Vulnerability Analysis Framework. We also assume that any

configuration vulnerabilities have already been detected and remedied. As a result, we perform

this analysis in two phases: inherent vulnerability analysis and absolute vulnerability analysis.

We only focus on identifying the potential for misuse of privileges, and not the potential

any individual has to abuse those privileges. In this sense, we are identifying the possible in-

sider threat—not actual insiders. We may use psychological indicators to identify possible insid-

ers [BISAR, §4], but that is outside the scope of this case study.

§4.4.2 Phase 1: Preparation

We must first determine the scope of the global policy event space. Consider the universal set

of subjects for an electronic voting environment. Enumerating every possible voter may be im-

practical for larger districts. Instead, we create a class of subjects and define the criteria required

to belong to that subset. For example, we may define the class:

voter = { s : s is a registered voter }

The class voter captures a subset of actual subjects. However, managing the relationships

between these subsets may get complicated quickly, especially if they are not independent sets.

For example, election officials, poll workers, and bystanders may also be registered voters. We

must keep these relationships in mind when performing our analysis. We may do this by defining

hypothetical subjects that belong to multiple classes.

We define the following subject classes for the election process scenario: voter for registered

voters, worker for poll workers, official for election officials, and bystander for bystanders with

access to the election equipment storage rooms. We also define a subject, Yasmin, who belongs

to both the bystander and voter classes.

We define the following object classes: ballot for official paper ballots, printer for the elec-

tronic ballot printers, box for the ballot boxes, and tally for the tally machines at the election

headquarters. Each printer object has two user accounts defined: an administrator account

named root, and a guest user account named anon. We add these user accounts to both the

universal set of subjects and universal set of objects. We define additional objects, actions, and

conditions as needed.

60

§4.4.3 Phase 2: Inherent Vulnerability Analysis

In this phase, we identify those policy events that are authorized by the feasible oracle, but unau-

thorized by the ideal oracle. This captures the potential for an insider to take advantage of the

intentional compromises made by the policy makers to violate the ideal policy.

However, approximating the configured oracle for all events may be intractable depending

on the environment. We address this by carefully selecting the policy events we consider in this

phase. We assume at this stage in our analysis that there are no configuration vulnerabilities

present for our global policy event space. As a result, the feasible and configured oracles should

be identical. Since the configured oracle is often easier to approximate in practice, we begin by

identifying those events allowed by the configured oracle. These events should also be autho-

rized by the feasible oracle.

For example, suppose only election officials are authorized to configure the ballot printers,

but anyone may print out ballots. At a configured policy level, this is captured by only allowing

the root user account to perform the config() action. The events allowed by the configured

oracle include:

Pco(root, printer, config(), true) = yes

Pco(root, printer, print(), true) = yes

Pco(anon, printer, print(), true) = yes

Since the configured and feasible oracles are identical, we know these policy events are also

authorized by the feasible oracle:

Pfe (root, printer, config(), true) = yes

Pfe (root, printer, print(), true) = yes

Pfe (anon, printer, print(), true) = yes

The next step in this process is to approximate the ideal oracle for these events. This must

be done by querying the actual policy makers, which in this case will be the election officials.

Suppose we find:

Pid (root, printer, config(), true) = yes

Pid (root, printer, print(), true) = yes

Pid (anon, printer, print(), true) = no

61

The ideal oracle also specifies which users are authorized to authenticate to user accounts

on the ballot prints. Specifically:

Pid (official, root, authenticate(), true) = yes

Pid (anyone, anon, authenticate(), true) = yes

There is only one resulting inherent vulnerability in this case. The user account anon is able

to perform print() action under any condition:

Pco(anon, printer, print(), true) = yes

Pid (anon, printer, print(), true) = no

The next step in our analysis process is to look for other vulnerabilities involving the anon

account. Upon further investigation, we learn that ballots should ideally be printed by regis-

tered voters only on election day. The ideal policy captures this by only authorizing voters to

authenticate as the anon account, and restricting the access of the anon account by the date:

Pid (voter, anon, authenticate(), true) = yes

Pid (S \ voter, anon, authenticate(), true) = no

Pid (anon, printer, print(), getdate()= 2012-11-04) = yes

Pid (anon, printer, print(), getdate() 6= 2012-11-04) = no

This captures an insider threat. Anyone with access to the printer has access to the anon

user account, and may print out official ballots. Consider the subject Yasmin, who belongs to

both the bystander and registered voter classes. While it may be less than ideal, Yasmin must

have access to the storage room at the high school where the election equipment is stored prior

to election day:

Pfe (Yasmin’s key, storage room, unlock, true) = yes

As a result, Yasmin is able to authenticate as the anon user account, and access the ballot

printers prior to the election. Therefore, for the subject Yasmin we find:

Pin (Yasmin, anon, authenticate(), true) = yes

Pin (Yasmin, printer, print(), getdate() 6= 2012-11-04) = yes

Pid (Yasmin, printer, print(), getdate() 6= 2012-11-04) = no

Yasmin is able to unlock the storage room, access the election equipment prior to the elec-

tion, print several ballots using the ballot printer, and finally place these ballots in the ballot box.

Under our naïve set of security procedures, this insider attack would go undetected.

62

The final step in this phase is to mitigate the discovered insider threats. The election offi-

cials decide that adding more sophisticated access control mechanisms to the ballot printers is

impractical. Between the pre-election testing and early voting, restricting the print() function

by date is too difficult to maintain. In light of this, the election officials instead decide to mitigate

Yasmin’s insider threat by placing ballot printers in tamper resistant locked boxes that may only

be unlocked by poll workers or election officials. As a result, under our new policy:

Pin (Yasmin’s key, printer, unlock, true) = no

Pin (Yasmin’s key, box, unlock, true) = no

This reduces Yasmin’s ability to stuff the ballot boxes prior to the election. To be safe, we

may also decide to add a security procedure requiring poll workers to verify the ballot boxes are

empty prior to the election.

We only consider policy events that are authorized by the feasible oracle in this phase. How-

ever, several policy events may be unknown by the feasible oracle. For example, the ballot printers

are unable to recognize specific individuals:

Pfe (Yasmin, printer, config(), true) = unknown

Yasmin may still have privileges at a lower level of policy that she may misuse to violate the

ideal policy. For example, Yasmin may be able to guess the root password on the ballot printers.

We resolve these unknown policy events in the next phase.

§4.4.4 Phase 3: Absolute Vulnerability Analysis

Our insider threat analysis has focused so far on unequivocal policy violations between consec-

utive levels of the policy hierarchy. However, equivocal policy violations indicate that there may

be a potential problem elsewhere in the hierarchy. We determine whether the policy event as-

sociated with an equivocal violation represents an insider threat by determining if an absolute

vulnerability exists for that event. Specifically, we search for any policy events E such that:

Pid(E) = no

Pfe(E) = unknown

Pco(E) = unknown

Pin(E) = yes

63

The first step in this phase is to identify those policy events that the security mechanisms are

unable to restrict. Since the configured and feasible oracles are equivalent, we focus on the policy

events that have a unknown response by the feasible oracle. Once these policy events have been

identified, we must determine if an absolute vulnerability exists for those events. For example,

Yasmin is allowed access to the storage room for the intent of accessing school supplies. She

is not authorized to access the storage room to tamper with the election equipment. However,

realistically, we are unable to measure or restrict intent. Therefore:

Pid (Yasmin, storage room, unlock, Intent(Yasmin)≡ tamper_equip) = no

Pfe (Yasmin, storage room, unlock, Intent(Yasmin)≡ tamper_equip) = unknown

Pin (Yasmin, storage room, unlock, Intent(Yasmin)≡ tamper_equip) = yes

The equivocal policy violation between the ideal and feasible oracles is associated with an

unequivocal violation between the ideal and instantiated oracles, and hence an absolute vulner-

ability exists. Yasmin is able to unlock the storage room for any purpose, including tampering

with the election equipment. There is no technological solution that is capable of restricting the

free will of an individual, which limits our options for mitigating this insider threat. We may be

able to implement additional security procedures to minimize the potential threat, but at some

level we must trust Yasmin not to misuse her privileges.

For example, Yasmin should only need access to the storage room during the day. Evening

activities may be postponed for the few days that the election equipment is located at the high

school, and the entire school locked down after classes end. As a result, Yasmin is no longer able

to access the storage room in the evenings:

Pfe (Yasmin, high school, access, AfterHours()≡ true) = no

Pin (Yasmin, storage room, access, AfterHours()≡ true) = no

This restricts the number of bystanders that may access the equipment during hours at which

this activity would go unnoticed. We may additionally require that all access during the day to

the storage room is monitored. However, we must still trust that Yasmin does not misuse her

privileges during the day.

This analysis of absolute vulnerabilities not only illustrates the potential insider threat in

this case study, but also emphasizes where trust is a necessary part of this hypothetical election

process. While it is clear that the election officials must be trusted entities in this process, we

64

may discover that the process affords more trust to bystanders than previously understood. We

may not be able to limit the free will of these subjects, but we may be able to improve our security

procedures to mitigate the insider threat.

§4.5 Prior Work

The Policy-Based Vulnerability Hierarchy is based on the “Unifying Policy Hierarchy,” which we

introduced in chapter 2. The hierarchy presented in this chapter keeps in the same spirit as the

original. The specific modifications we have made to the hierarchy include:

•We introduce the notion of a policy oracle and use this to define the different

levels of a security policy.

•We slightly alter the terminology for each level of the policy hierarchy to more

accurately describe what each level represents. For example, instead of “Ac-

tual Policy,” we name the lowest level of the hierarchy the instantiated oracle.

•We define the notions of precision, completeness, and correctness, and dis-

cuss these properties with respect to the policy oracles at different levels of

abstraction.

•We use the same notion of a policy event, except we introduce the term

global policy event space to refer to the “set of all policy events.” Specifically,

the set PE in the original hierarchy is the set E in this dissertation.

•We set the domain of every policy event to be the global policy event spaceE,

and introduce unknown policy responses for events that are outside the orig-

inal domains defined for each level. This allows us to compare events across

all levels of the policy hierarchy.

•We clarify exactly what a positive response indicates at each level of the hi-

erarchy. For example, a yes response by the ideal oracle determines what

should or should not be authorized. Contrast this with a yes by the config-

ured oracle which indicates what is or is not allowed.

• The instantiated oracle is broader than the original Actual Policy level, cap-

turing access outside the system as well. For example, if we are concerned

65

with whether a file may be deleted, we also want to capture whether some-

one has physical access to destroy the storage medium.

• In addition to general policy violations, we introduce the notions of an un-

equivocal, equivocal, and indirect violation.

•We expand the notion of a policy event and the global policy event space to

accommodate conditional and adaptive policies.

Since we restrict vulnerabilities to unequivocal policy violations, our notions of an imple-

mentation vulnerability is equivalent to a runtime vulnerability in the original hierarchy. We

also capture the previous modifications made to the hierarchy for cases of insider threat.

§4.6 Summary

This chapter introduced the Policy-Based Vulnerability Hierarchy, which provides a hierarchical

policy-based approach capable of separating policy events allowed by intention from those al-

lowed by implementation. The policy hierarchy defines four policy oracles at different levels of

abstraction: ideal, feasible, configured, and instantiated. We use unequivocal policy violations

between consecutive policy oracles to form the vulnerability hierarchy, resulting in three types

of vulnerabilities: inherent, configuration, and implementation.

The Policy-Based Vulnerability Hierarchy addresses our overall objectives in multiple ways.

We use this hierarchy to provide a policy-based notion of a implementation vulnerability, which

becomes the basis for the Policy-Based Vulnerability Analysis Framework. The hierarchy is also

influenced by practice, and capable of capturing both security procedures and security mech-

anisms. We take into consideration how approximation of the policy oracles affects properties

such as precision, completeness, and correctness. Finally, we demonstrate how to use this frame-

work for high-level insider threat analysis.

66

FIGURE 4.4: TERMINOLOGY AND NOTATION

Name Notation Reference

Policy Event E = (s , o, a) 3.1 (p37)
Conditional Policy Event E = (s , o, a , b) 3.2 (p38)

Subject s
Object o
Action a
Boolean Condition b

Global Policy Event Space E = S× O× A× B 3.3 (p39)
Universal Subject Set S
Universal Action Set O
Universal Object Set A
Universal Condition Set B

Policy Decision d ∈ D = { yes, no } 3.4 (p39)
Policy Response r ∈ R = { yes, no, unknown } 3.5 (p39)
Policy Statement S = (E , r) 3.6 (p40)

Policy Set P = {S1, S2, . . . } 3.8 (p40)
Precise iff ∃ (E , r) ∈ P ∀ E ∈ E 3.9 (p41)
Complete iff S = (E , d) ∀S ∈ P 3.10 (p41)
Unambiguous iff ∃ (E , d) ∈ P ∀ E ∈ E 3.11 (p41)
Correct iff P (E) = r ∀ (E , r) ∈ P 4.2 (p45)

Policy Oracle P = E→ R 4.1 (p45)
Ideal Oracle Pid = E→ D 4.3 (p45)
Feasible Oracle Pfe = E→ R 4.4 (p47)
Configured Oracle Pco = E→ R 4.5 (p48)
Instantiated Oracle Pin = E→ D 4.6 (p49)

[Let Pi (E) = ri and Pj (E) = rj where i 6= j for the same event E .

Policy Violation ri 6= rj ([see above) 4.7 (p51)
Unequivocal Violation and ri , rj ∈ D 4.8 (p51)
Equivocal Violation and ri ∈ D and rj = unknown 4.9 (p51)
Indirect Violation ri = unknown and rj = unknown 4.10 (p52)

Vulnerability Hierarchy 4.11 (p53)
Inherent Pid (E) 6= Pfe (E) 4.13 (p54)
Configuration Pfe (E) 6= Pco(E) 4.15 (p55)
Implementation Pco(E) 6= Pin (E) 4.17 (p56)

Summary of the terminology and notation used throughout chapter 4. In general, universal sets
are typeset in blackboard bold (such as E) and oracle functions are typeset in script (such asP).

67

CHAPTER 5

Characteristic-Based Classification

We introduce the Characteristic-Based Vulnerability Classification Scheme in this chapter, which

classifies implementation vulnerabilities at a practical level of abstraction. This work extends the

hierarchical and characteristic-based approaches of previous work [WHA05, BIS99].

§5.1 Introduction

Given the complexity of approximating the instantiated oracle in practice, an undirected search

for implementation policy violations is not a practical use of finite resources such as time, money,

or expertise. This highlights the need for targeted implementation vulnerability analysis in prac-

tice. For this, we turn to vulnerability classification.

Vulnerability classification schemes play an important and informative role in vulnerability

analysis. Classification results allow analysts to “extract common features” between similar vul-

nerabilities [BIS03A, p660], and provide a distribution of prevalent vulnerability types. Consider

the Common Weakness Enumeration (CWE) list and classification scheme [CWE09]. The latest

CWE report illustrates that while buffer overflows were traditionally the most common type of

software weakness, they have recently been overcome by web-based weaknesses such as cross-

site scripting (XSS) and SQL injection [CHR07]. This information is useful for both finding and

defending against vulnerabilities. For example, the prevalence of buffer overflow vulnerabilities

may direct the type of hypotheses formed during analysis, while the rise in web-based weak-

nesses may influence the type of defenses developed and deployed by the community.

However, many existing classification schemes are ad hoc in nature and suffer from ambi-

guity. For example, the classification of the 1988 Internet worm [ROC89] in some classification

schemes is inconsistent depending on point of view and level of abstraction [BIS99, BIS96]. This

68

inconsistency hinders the repeatability of vulnerability analysis based on these classification re-

sults. Repeatability is a fundamental objective of our Policy-Based Vulnerability Analysis Frame-

work, making it vital that we use an approach to classification that provides repeatable results.

Some classification schemes also suffer from ambiguity in what is classified in addition to

how it is classified. Consider the ambiguity surrounding how the term “vulnerability” is defined.

Instead of classifying actual vulnerabilities, many classification schemes avoid this ambiguity by

classifying errors, bugs, faults, or weaknesses that tend to lead to a vulnerability based on the ob-

servations of security analysts. For example, many vulnerabilities are classified as a buffer over-

flow, based on a bug caused by insufficient bounds checking before placing data into a buffer.

Based on these classification results, we may turn to dynamic or static analysis to detect and

eliminate these type of bugs from the software, or encourage better coding practices to prevent

these types of bugs in the first place. From a software engineering standpoint, this focus on the

software bug may help improve the reliability and quality of the software. However, not all buffer

overflow bugs lead to vulnerabilities—resulting in many false positives. While this improves the

quality of the software, it may not be the best use of resources from a security standpoint.

This also illustrates the difference between a bug versus a vulnerability. A vulnerability is

more than a software bug. The focus on bugs or weaknesses may hide other important charac-

teristics of that vulnerability. For example, we previously illustrated that many buffer overflow

vulnerabilities also require stack modifications or the ability to upload executable code [BIS10].

Many defenses against buffer overflow vulnerabilities, such as address-space randomization or

stack canaries, focus on these other characteristics. A characteristic-based approach not only

illustrates additional defense vectors, but also enables a targeted search of unknown vulnerabil-

ities in a system [BIS99].

We expand this characteristic-based approach with the Characteristic-Based Vulnerability

Classification Scheme in this chapter, and illustrate how this enables a targeted analysis of im-

plementation vulnerabilities in chapter 6. We begin by providing the foundation necessary to

formally define implementation vulnerabilities for theoretical environments. We then illustrate

the impracticality of the assumptions made by this theoretical model, and provide an abstraction

of implementation vulnerabilities appropriate for practical environments. We use this abstrac-

tion in our hierarchical characteristic-based approach to classification.

69

§5.2 Terminology

This section formally defines implementation vulnerabilities using the Formal Implementation

Vulnerability Model, which defines a security policy for a Turing machine as a decidable lan-

guage of authorized configurations. This provides the foundation necessary for our character-

istic-based approach to vulnerability classification.

§5.2.1 Implementation Vulnerabilities

We introduce the notion of an implementation vulnerability in chapter 4 as the set of conditions

that enable an unequivocal policy violation between the configured and instantiated oracles. We

refine this notion by formally defining conditions and policy violations in a theoretical setting,

using deterministic universal Turing machines as the system model.

We start by formally defining the actual policy violation itself. An implementation policy

violation for a Turing machine M is defined as a configuration u that is either valid but unau-

thorized, or authorized but invalid. Formally:

DEFINITION 5.1: An implementation violation on a Turing machine M for a

security policy P is a configuration u in the symmetric difference:

u ∈ (VALID (M) 	 L(P))

We use the notion of real-time security to capture when these implementation policy viola-

tions occur. Informally, a Turing machine M is real-time secure for an input string w when there

are no implementation violations in its current partial computation trace. The earliest computa-

tion step i such that the machine M is no longer real-time secure captures the exact moment an

implementation violation occurs. We describe the configurations just prior to time step i using

preconditions:

DEFINITION 5.2: A precondition for an implementation violation occurring

at computation step i of a Turing machine M on input w with respect to a

security policy P is a configuration t such that:

t ∈ PARTIAL(M , P, w , i − 1)

We use both the implementation violation and these preconditions to formally define an

implementation vulnerability for a Turing machine:

70

DEFINITION 5.3: An implementation vulnerability is the pair V = (T, U) such

that each t ∈ T is a precondition for a implementation violation u ∈ U .

While Definition 5.3 provides a precise policy-based definition of an implementation vul-

nerability for a Turing machine, this low-level of abstraction is impractical for most environ-

ments. We discuss this impracticality next.

§5.2.2 Perfect Knowledge Assumption

The Formal Implementation Vulnerability Model summarized in section 5.2.1 operates in a the-

oretical setting where we have perfect knowledge of our systems and environment. However,

a major objective of this dissertation is to provide a practical framework for implementation

vulnerability analysis. As such, we make explicit the underlying assumptions in our theoretical

model, and examine the practicality of these assumptions. We begin by explicitly defining the

perfect knowledge assumption:

DEFINITION 5.4: The perfect knowledge assumption assumes that we have

a well-defined non-empty set of systems M, and for each system M ∈ M we

know the Turing machine specification M = (Q , Σ, Γ, δ, q0, qa, qr) and the

computation trace for every input w computed by M .

These assumptions are not unreasonable or unusual in a theoretical setting. However, when

moving from a theoretical to a practical setting, every part of the perfect knowledge assumption

falls apart. In contrast to universal Turing machines, modern computers are not pre-defined or

built using a formal Turing machine specification. The ad hoc and evolving mix of software and

hardware make determining an equivalent Turing machine specification for most computers

prohibitively complex at best.

The assumption that we know the computation trace is also problematic. While many mod-

ern systems are capable of recording an audit or system log, these logs may not capture every

input or enough detail to comprise a full computation trace. There are some approaches that

use virtualization to capture enough information for attack recovery or replay, but this does not

address the insufficiency of log information for the underlying system itself [DUN02, OLI06].

Even if the processing and memory requirements for recording the trace for every input were

practical, parsing these logs to locate policy violations may be prohibitively time consuming. For

71

example, the area of computer forensics must grapple with issues surrounding the amount of

data collected, and the practical utility of that data [PEI07B, PEI07C].

Furthermore, the observer and observed are often the same in practice—the systems them-

selves are responsible for correctly recording and storing system or audit logs. If we are inves-

tigating the system for vulnerabilities, what confidence do we have that the recording mecha-

nisms themselves are not vulnerable? Attacks on these recording mechanisms are standard, and

the long-standing dilemma of “trusting trust” persists even at the hardware level [THO84, IRV07].

Even if we were able to provide the specification and the computation trace, we run into

yet another practical issue. Classification is often done for a generic set of machines and envi-

ronments. Without a specific set of machines, we are unable to provide the specification and

computation history even in a theoretical setting. For example, Aslam’s Taxonomy of Security

Faults is designed to apply to any Unix-based system [ASL95]. The number of possible operating

system and hardware combinations makes the resulting set of machines prohibitively large to

enumerate. However, this broad applicability is vital to making a practical classification scheme.

It is possible to develop systems capable of addressing many of these concerns. However,

in practice, those systems are unlikely to supplant the widely-used existing systems. As such, we

focus our analysis on these existing systems and conclude:

ASSERTION: The perfect knowledge assumption is impractical.

The perfect knowledge assumption may be practical for some situations. There may exist

a small-scale high-assurance environment with well-defined devices and security policies for

which using the Formal Implementation Vulnerability Model and formal methods may be prac-

tical and desirable. However, the perfect knowledge assumption is impractical for most environ-

ments, especially those that we wish to target for vulnerability analysis.

This motivates our need to provide levels of abstraction that move away from the require-

ments of the perfect knowledge assumption. Consider, for example, Turing machine algorithms.

Recall from section 2.4.3 that our intuitive notion of an algorithm is roughly equivalent to what

may be computed by a Turing machine. Introducing some amount of ambiguity allows us to dis-

cuss the computation of a Turing machine at a more practical level of abstraction. If necessary,

this ambiguity may be resolved by reversing this abstraction to provide a full Turing machine

specification for any given algorithm.

72

We follow a similar approach in this chapter. We use abstraction to hide the specification

and computation trace requirements. However, too much ambiguity hinders repeatability. We

attempt to introduce as little ambiguity as possible to make this abstraction process reversible

and repeatable, similar to how the abstraction of Turing machine algorithm may be reversed to

the equivalent Turing machine specification. We introduce the mechanisms necessary for this

abstraction next. While this adds a considerable amount of formal machinery to this approach,

much of this will be hidden in practical settings.

§5.2.3 Representative System Set

Embedded in the perfect knowledge assumption is the need for an explicitly defined set of sys-

temsM. This representative set of systems captures those systems that we are interested in ana-

lyzing for vulnerabilities. We treat this set as a universal set, restricting our discussion of precon-

ditions and policy violations to this set of systems.

Our ability to abstract preconditions and violations for classification depends on the simi-

larity of systems in this set. If the systems are too disparate, we will be unable to find common

preconditions and apply our analysis across multiple systems. If the systems are too similar, our

abstractions will not generalize to other systems or environments, limiting the applicability of

our results in practice.

We attempt to avoid these issues by requiring each system in the representative system set

to be similar enough in specification and functionality such that they are capable of enforcing

the same configured security policy for a nonempty subset of the global policy event space. For

example, despite differences in hardware and operating environment, a laptop and desktop run-

ning the same operating system share some aspects of the configured security policy for a subset

of the global policy event space. Specifically:

DEFINITION 5.5: The representative system set is the universal set of sys-

temsM such that the configured security policy for each M ∈ M is equivalent

for some nonempty subset of the global policy event space E.

As we discussed in section 5.2.2, the representative system setM is often ambiguously de-

fined in practice to cover a wide-range of actual machines. For example, the representative sys-

tem set may include any Linux-based operating system. While we may be unable to enumerate

73

all of the systems in the representative system set, we are often able to unambiguously determine

if a specific system is part of the representative set. For example, if the representative set includes

any Linux-based operating system, we know that a specific machine M running an Ubuntu Linux

distribution belongs to our representative system set.

We capture this ability with a special oracle, similar to an indicator function,† to determine

if a given machine M is part of our representative system set. Specifically:

DEFINITION 5.6: The system oracle is a function IM for the representative sys-

tem setM such that:

IM(M) =
{

1 if M ∈ M
0 if M 6∈ M

In practice, we approximate the operation of the system oracle to avoid enumeration of the

representative system set. Specifically, we define the properties of systems that belongs to the

representative system set instead of enumerating all of the systems that satisfy that property. As

a result, we may approximate the oracle using set-builder notation:

M = {M : M is a high-performance machine }

However, if we use this notation, the properties must be testable by the system oracle. In

this example, the “high-performance” property is too ambiguous. Depending on who, how, and

when the system oracle is approximated, what constitutes a high-performance machine may

change drastically. We recommend using properties based on the formal Turing machine specifi-

cation. In practice, this equates to properties based on source code, machine state, architecture,

and memory contents. For example, consider:

M = {M : M is running the FreeBSD operating system }

In this example, the system oracle should be able to determine if the system is running the

FreeBSD operating system source code.

§5.2.4 System Sets

Under the perfect knowledge assumption, we are able to use the Turing machine specification

and computation trace to determine the preconditions that lead to known policy violations dis-

† Indicator functions are also called “characteristic functions” in mathematics or “membership functions” when deal-
ing with fuzzy sets.

74

covered on each machine M ∈ M. We capture the known preconditions and policy violations

for each system with the following sets:

DEFINITION 5.7: The system precondition set for a system M ∈ M is the set:

TM = { t : t is a known precondition on M }

DEFINITION 5.8: The system violation set for a system M ∈ M is the set:

UM = { u : u is a known policy violation on M }

Recall that both preconditions and policy violations describe the configurations of a Turing

machine. Each configuration is a string that describes the state of the Turing machine and the

current tape contents. As a result, the system precondition set and system violation set are both

sets of strings. However, what each represent conceptually are very different. A policy violation

captures what went wrong, and a precondition captures how that violation occurred. As a result,

which configurations are described by a precondition or policy violation will differ.

At the start of our analysis, these sets may be empty depending on the pre-existing infor-

mation available for our systems. As new policy violations are discovered, they are added to the

system violation set along with the preconditions that led to that violation.

§5.2.5 Universal Sets

We must be especially careful of the system-specific nature of preconditions and policy viola-

tions. Both preconditions and policy violations are strings describing one or more configura-

tions of a Turing machine. Equivalent strings refer to equivalent preconditions within a single

system precondition set. The same holds with the system violation set.

However, this is not the case across multiple different system sets. Equivalent strings across

system precondition or violation sets do not necessarily refer to equivalent configurations. For

example, the configuration 01q2110 may exist on more than one machine, but q2 refers to a spe-

cific state on a specific machine. The strings, while they may appear equivalent, have different

meanings depending on the system. Given this, we do not simply union together the system pre-

condition and violation sets to form our universal sets. We must keep the association between

the preconditions (or policy violations) and the system for which they are defined. Specifically,

we define these sets as follows:

75

DEFINITION 5.9: The universal precondition set for the representative system

setM is the set of pairs:

T = { (M , TM) : TM is the system precondition set for M ∈ M }

DEFINITION 5.10: The universal violation set for the representative system

setM is the set of pairs:

U = { (M , UM) : UM is the system violation set for M ∈ M }

Despite the system-specific nature of preconditions and policy violations, there may be sim-

ilarities across machines. For example, state qi in M i may clear the tape and state qj in M j may

do the same. Preconditions or policy violations based on these states may share some similari-

ties. We use characteristics and symptoms to capture these similarities across systems.

§5.3 Characteristic-Based Abstraction

We established in section 5.2.2 that the perfect knowledge assumption is impractical for most

environments. We define characteristics and symptoms in this section to capture implemen-

tation vulnerabilities at a more practical level of abstraction. Whereas preconditions and pol-

icy violations describe machine-specific configurations, characteristics and symptoms describe

configurations across multiple systems.

§5.3.1 Characteristics

Bishop introduces the notion of a characteristic as “a condition that must hold for the vulnerabil-

ity to exist” [BIS99]. We refine this notion to provide an abstraction of preconditions, and move

away from the perfect knowledge assumption. Informally, we define a characteristic as a set of

similar known preconditions across multiple systems. We capture this behavior as follows:

DEFINITION 5.11: A characteristic for the representative system set M is the

set of system-specific preconditions:

X = { (M , T) : T ⊆ TM for a system M ∈ M }

For example, suppose a null character string, denoted in C as \0, triggers a violation in mul-

tiple systems. Upon analysis, we discover the preconditions t1, t2 ∈ TM 1 and t3 ∈ TM 2 such that:

t1 = \0\0q2 \0 t3 = \0\0q6

t2 = \0\0\0q3

76

We can group these system-specific preconditions together with a “null character” characteristic

that spans across systems M 1, M 2, and M 3 as follows:

Xnull = { (M 1, { t1, t2 }), (M 2, { t3 }) }

Conceptually, the characteristic Xnull maps the preconditions t1 and t2 on system M 1, and

precondition t3 on system M 2. We use a special oracle, called the characteristic oracle to capture

the preconditions a characteristic maps onto a specific system without having to enumerate the

characteristic itself. Specifically:

DEFINITION 5.12: The characteristic oracle is a functionX such that:

X (X , M) =
{

T if and only if (M , T) ∈ X
∅ otherwise

We say characteristic X maps the preconditions T onto system M .

For example, we may query the characteristic oracle to identify the set of preconditions that

characteristic Xnull maps onto system M 1:

X (Xnull, M 1) = { t1, t2 }

In a theoretical sense, the characteristic oracle is unnecessary. However, in practice, we ap-

proximate the characteristic oracle to avoid enumerating the preconditions associated with each

system in the representative system set, and mitigate our reliance on the perfect knowledge as-

sumption. For example, we may wish to define the null character characteristic more abstractly:

Xnull = { t | t contains the null character \0 }

We rely on the oracle to translate this description into specific preconditions when necessary.

§5.3.2 Symptoms

Characteristics are abstractions of preconditions. Symptoms, on the other hand, are abstractions

of policy violations. We define symptoms similarly to characteristics:

DEFINITION 5.13: A symptom for the representative system setM is the set of

system-specific policy violations:

Y = { (M , U) : U ⊆ UM for a system M ∈ M }

We define the symptom oracle similar to that of a characteristic oracle. Informally, the symp-

tom oracle maps to different sets of policy violations depending on the system. Formally:

77

DEFINITION 5.14: The symptom oracle is a function Y such that:

Y (Y , M) =
{

U if and only if (M , U) ∈ Y
∅ otherwise

We define two different types of symptoms to capture an increase in privileges versus a de-

crease in privileges. Specifically:

Yincr = { u : VALID (M) \ L(P) }

Ydecr = { u : L(P) \ VALID (M) }

The symptom Yincr captures policy violations that result from configurations that are valid, but

not authorized by the security policy. Since there are more configurations possible than are al-

lowed, this symptom captures an increase in privileges. The symptom Ydecr captures policy vio-

lations that result from configurations that are allowed, but not possible. Hence, this symptom

captures a decrease in privileges.

We focus primarily on characteristics in this dissertation, but symptoms provide an impor-

tant mechanism for measuring the impact of a implementation vulnerability at a higher level of

abstraction. For example, a distributed denial of service will generate a large number of Ydecr

symptoms and gaining root privileges will generate a large number of Yincr symptoms.

§5.3.3 Properties

It is difficult to quantify what makes a good characteristic or symptom. For example, a char-

acteristic made of randomly selected known preconditions will not be useful when it comes to

vulnerability classification and analysis. However, we can ensure certain properties hold when it

comes to sets of characteristics or symptoms.

First, we require characteristics and symptoms to be sound. Informally, two characteristics

or symptoms are sound if they do not include overlapping subsets. More specifically:

DEFINITION 5.15: A set of characteristics is sound if and only if the character-

istics are pairwise disjoint; i.e. for every distinct pair of characteristics X i and

X j in the set where i 6= j , we have:

X (X i , M) ∩ X (X j , M) = ∅ ∀M ∈ M

Similarly, a set of symptoms is sound if and only if:

Y (Yi , M) ∩ Y (Yj , M) = ∅ ∀M ∈ M

78

For example, suppose we have the characteristics:

X1 = { (M 1, { t1, t2 }), (M 2, { t3 }) } X (X1, M 1) ∩ X (X2, M 1) = ∅

X2 = { (M 1, { t4 }), (M 2, { t5 }) } X (X2, M 1) ∩ X (X3, M 1) = ∅

X3 = { (M 1, { t2, t6 }) } X (X1, M 1) ∩ X (X3, M 1) = { t2 }

The set of characteristics { X1, X2, X3 } is not sound since both X1 and X3 both map to the char-

acteristic t2. However, the set of characteristics { X1, X2 } is sound.

Ideally, we want there to exist a characteristic for every known precondition and a symptom

for every known policy violation. We define the notion of completeness for sets of characteristics

and symptoms to capture this:

DEFINITION 5.16: A set of characteristics X is complete if and only if the set X

covers the universal precondition set T; i.e. for every system precondition set,

we have the following:⋃
X i ∈ X

X (X i , M) = TM ∀TM ∈ T

Similarly, a set of symptoms Y is complete if and only if:⋃
Yi ∈ Y

Y (Yi , M) = UM ∀UM ∈ U

We enforce the properties of soundness and completeness in our universal sets of charac-

teristics and symptoms. These properties are critical to our ability to form sound, unique, and

minimal sets of characteristics or symptoms.

§5.3.4 Universal Sets

Before we are able to abstract and classify implementation vulnerabilities, we must develop uni-

versal sets of characteristics or symptoms that are both sound and complete. Specifically:

DEFINITION 5.17: The universal characteristic set, denoted X, is a sound and

complete set of characteristics such that |X | < |T | for the universal precon-

dition set T.

DEFINITION 5.18: The universal symptom set, denotedY, is a sound and com-

plete set of symptoms such that |Y | < |U | for the universal violation set U.

We require that the number of characteristics in our universal characteristic set be strictly less

than the number of preconditions in our universal precondition set. Without this requirement,

79

we may form a sound and complete set of characteristics such that there exists one characteristic

for every precondition in our universal sets. We end up with just as many characteristics as

preconditions, which does not improve the practicality of our model.

The development of a universal characteristic set or universal symptom set that meets these

requirements is non-trivial in practice. Consider the soundness requirement for the universal

characteristic set. We approximate the characteristic oracle without explicitly defining precon-

ditions in practice, making it difficult to determine when two characteristics overlap. We may

be tempted to remove the soundness restriction, but this affects our ability to use characteristic-

based analysis to mitigate vulnerabilities later. As a result, it is more beneficial to limit the scope

of analysis over removing the requirement for sound universal sets.

In theory, the universal characteristic set is also complete with respect to the universal pre-

condition set. Since we do not explicitly define the universal precondition set in practice, this

property becomes difficult to measure. However, we assume that if a precondition is not cap-

tured at a theoretical level, it is not a “known precondition” at a practical level.

§5.3.5 Basic Sets

Suppose we have a set of preconditions, and wish to abstract those preconditions to a set of

characteristics. We capture this with the basic characteristic set. Bishop introduces the notion of

a basic characteristic set as a “unique, sound characteristic set of minimal size” [BIS99]. There are

different possible formalizations for a basic characteristic set based on our Formal Implementa-

tion Vulnerability Model. We discuss the advantages and disadvantages of these formalizations

in Appendix B. We use the following formalization:

DEFINITION 5.19: Given a set of preconditions T ⊆ TM for system M ∈ M, the

basic characteristic set is the set XT ⊆ X such that:

XT = { X i ∈ X : X (M , X i) ∩ T 6= ∅ }

DEFINITION 5.20: Given a set of policy violations U ⊆ UM for system M ∈ M,

the basic symptom set is the set YU ⊆ Y such that:

YU = { Yi ∈ Y : Y (M , Yi) ∩ U 6= ∅ }

We may capture more preconditions or policy violations in the basic sets than necessary in

practice. However, since the universal characteristic and symptom sets are sound, this formal-

80

ization still provides a basic characteristic set that is minimal, sound, and unique. As a result, if

we disable any characteristic in the basic set of a vulnerability, we disable the vulnerability itself.

This helps us detect when a vulnerability may exist in the system, and allows us to target specific

types of defenses against these discovered vulnerabilities.

§5.3.6 Vulnerabilities

We now have all of the necessary components to provide an abstraction of implementation vul-

nerabilities using characteristics and symptoms. Given a implementation vulnerability, we de-

fine the abstraction of this vulnerability as follows:

DEFINITION 5.21: Given an implementation vulnerability V = (T, U), the im-

plementation vulnerability abstraction (IVAB) is the pair Z = (XT , YT) such

that the set XT is the basic characteristic set for the set of preconditions T and

the set YT is the basic symptom set for the set of policy violations U .

Recall that different preconditions or policy violations may map to the same characteristic

or symptom. As a result, distinct system-specific implementation vulnerabilities may have the

same system-independent implementation vulnerability abstraction. We capture this with the

notion of a implementation vulnerability equivalence class as follows:

DEFINITION 5.22: An implementation vulnerability equivalence class (IVEC)

is a implementation vulnerability abstraction Z = (X , Y) associated with one

or more implementation vulnerabilities.

In a sense, an implementation vulnerability equivalence class represents a common “signa-

ture” of an implementation vulnerability. When we classify and analyze vulnerabilities, we work

with unique IVECs instead of low-level implementation vulnerabilities.

§5.3.7 Buffer Overflow Example

We avoid enumerating preconditions and policy violations in practice by approximating the

characteristic oracle or symptom oracle. This approximation may be informal—however, an an-

alyst must be able to consistently infer whether a particular characteristic belongs to the basic

characteristic set for a vulnerability, or whether a characteristic is present on a system.

81

Consider how the characteristic oracle is used. Technically, the characteristic oracle pro-

vides the set of preconditions captured by the characteristic on a system. We use this informa-

tion to determine whether the characteristic is present on the system. In essence, we use the

characteristic oracle as an indicator function as follows:

IX(X , M) =
{

1 ifX (X , M) 6= ∅
0 ifX (X , M) = ∅

In practice, we are more interested in whether the set of preconditions returned by the char-

acteristic oracle is non-empty than what the specific preconditions are. Considering this, the ap-

proximation of the characteristic oracle must be able to answer the following questions:

• Given a system M , does the characteristic X map to a non-empty set of pre-

conditions on system M ?

• Give a vulnerability abstraction Z , does the characteristic X map to a non-

empty set of preconditions for Z ?

We demonstrate this oracle approximation by revisiting our previous work on buffer over-

flow characteristics [BIS10]. The original buffer overflow characteristics, detailed in Appendix B,

are defined using natural language. For example, the characteristic P1 is defined as “[t]he length

of the uploaded string is longer than that of the buffer.” We refine this characteristic using

pseudo-code:

x:buff: len(input) > len(buffer)

Notice that we make no mention of preconditions. We are actually defining the characteristic

oracle above—not the characteristic itself. Those familiar with the pseudo-code will be able to

answer the two questions necessary of the characteristic oracle: does the x:buff characteristic

exist in a particular block of code, and does x:buff belong to the basic characteristic set of an

implementation vulnerability abstraction?

Not all buffer overflows result in a vulnerability. The original buffer overflow work defines

several other characteristics associated with buffer overflow vulnerabilities. For example, many

buffer overflow vulnerabilities must be able to jump into memory and begin executing instruc-

tions. The following characteristics capture this:

x:jmps: can_jump(stack) ≡ true

x:jmph: can_jump(heap) ≡ true

82

x:exes: can_exec(stack) ≡ true

x:exeh: can_exec(heap) ≡ true

Several other characteristics involve modifying a variable or pointer that affects the control

flow of the process. For example, an exploit of a buffer overflow vulnerability may attempt to

modify the return address of a subroutine or a function pointer. We capture this by defining

variables retnptr and funcptr respectively. Other exploits may attempt to modify a control

flow variable or pointer to a control flow variable, like a Boolean flag that causes the process

to branch. We define variables flowvar and flowptr to capture the control flow variable and

pointer. We use these variables to define the following characteristics:

x:rval: may_modify(retnptr) ≡ true

x:fptr: may_modify(funcptr) ≡ true

x:vval: may_modify(flowvar) ≡ true

x:vptr: may_modify(flowptr) ≡ true

x:path: affects_flow(flowvar) ≡ true

Finally, many of these vulnerabilities require the ability to upload a specific data type in the

input string. We capture this with the following:

x:addr: may_contain(input, addr) ≡ true

x:inst: may_contain(input, inst) ≡ true

x:type: may_contain(input, type(flowvar)) ≡ true

We developed these characteristics by examining the exploits that take advantage of these

buffer overflows, and observing aspects of the system architectures where these types of prob-

lems occur. For example, consider the buffer overflow vulnerability in the IPv6 code of OpenBSD

versions 3.1 through 4.1 [COR07]. An attacker is able to send fragmented ICMPv6 packets, and

overflow the mbuf kernel memory structure (x:buff) that stores network packets. Additionally,

the mbuf structure stores a function pointer named ext_free for the m_freem() function, which

is called when mbuf is freed. An attacker may upload a memory address (x:addr) and modify

this function pointer (x:fptr). The attacker then triggers the m_freem() function to execute

the arbitrary code stored at the uploaded memory address in kernel mode (x:jmph and x:exeh).

Each step of this attack may be mapped to a characteristic, allowing us to capture the underlying

buffer overflow vulnerability being exploited.

83

The above mbuf example captures an indirect executable buffer overflow vulnerability. These

vulnerabilities always follow the same pattern, including the x:buff, x:addr, x:fptr, x:jmph,

and x:exeh characteristics. The original buffer overflow work introduces four types of buffer

overflow vulnerabilities based on these patterns [BIS10]. We capture these by defining the basic

characteristic sets for the following implementation vulnerability equivalence classes:

DEFINITION 5.23: A direct executable buffer overflow is an implementation

vulnerability equivalence class with the basic characteristic set:

{ x:buff, x:addr, x:inst, x:rval, x:jmps, x:exes }

DEFINITION 5.24: An indirect executable buffer overflow is an implementa-

tion vulnerability equivalence class with the basic characteristic set:

{ x:buff, x:addr, x:fptr, x:jmph, x:exeh }

DEFINITION 5.25: A direct data buffer overflow is an implementation vulner-

ability equivalence class with the basic characteristic set:

{ x:buff, x:type, x:vval, x:path }

DEFINITION 5.26: An indirect data buffer overflow is an implementation vul-

nerability equivalence class with the basic characteristic set:

{ x:buff, x:addr, x:vptr, x:path }

We map various defenses against these buffer overflow vulnerabilities to the specific character-

istics they attempt to disable in the original paper [BIS10]. For example, canaries often attempt

to detect and react to the x:rval characteristic. We refer readers to this work for more details on

these characteristics, vulnerabilities, and available defenses.

§5.4 Hierarchical Classification

Using characteristics and symptoms, we now have a level of abstraction for implementation vul-

nerabilities that we may work with for vulnerability classification. We take a hierarchical ap-

proach to classification by defining classes of characteristics or symptoms at different levels of

abstraction. We detail our approach here, and illustrate a classification tree for buffer overflows.

84

§5.4.1 Classification Components

Informally, a class is a collection of sets that share some property [JEC03, p5]. This notion fits well

with our model, since characteristics themselves are sets of preconditions. Therefore, we define

a characteristic class as a collection of similar characteristics:

DEFINITION 5.27: A characteristic class is a collection of characteristics that

share a common property.

DEFINITION 5.28: A symptom class is a collection of symptoms that share a

common property.

The properties we use to define classes depends on how the characteristics or symptoms are

expressed. For example, consider the buffer overflow characteristics introduced in section 5.3.7.

We take advantage of the pseudo-code used to define these characteristics, and define classes

based on the underlying functions. For example, three characteristics use the may_contain()

function, both x:jmps and x:jmph use the function can_jump(), and both x:exes and x:exeh

use the can_exec() function. Along these lines, we define the following characteristic classes

using a simple grammar:

X:CONTAINS ::= x:addr | x:inst | x:type

X:JUMP ::= x:jmps | x:jmph

X:EXEC ::= x:exes | x:exeh

We make an additional observation about the characteristics that use the may_modify()

function. The direct buffer overflows alter the control flow by modifying values directly, whereas

indirect overflows modify pointer variables to alter the program flow. We form a class of classes

X:MODIFY to capture this:

X:MODIFY ::= X:DIRECT | X:INDIRECT

X:DIRECT ::= x:rval | x:vval

X:INDIRECT ::= x:fptr | x:vptr

There are several other classes we could define. For example, both x:jmps and x:exes are

dependent on stack-based memory. This highlights the importance the characteristic classes

and master classification tree have on consistent vulnerability classification. We leave the devel-

opment of a master symptom tree as future work.

85

§5.4.2 Classification Trees

We use trees to provide a hierarchical classification framework. This approach organizes classes

of characteristics or symptoms into different levels of abstraction. We start by creating classifi-

cation trees for characteristics and symptoms separately:

DEFINITION 5.29: The master characteristic tree is a tree, rooted at a node

labeled CX, such that each leaf node is a characteristic and each internal node

is either a characteristic class or a class of characteristic classes.

DEFINITION 5.30: The master symptom tree is a tree, rooted at a node la-

beled CY, such that each leaf node is a symptom and each internal node is

either a symptom class or a class of symptom classes.

We allow for characteristics and symptoms to appear multiple times in the hierarchy. The

master classification tree is formed by combining the master characteristic and symptom trees:

DEFINITION 5.31: The master classification tree is a supergraph of the master

characteristic tree CX and master symptom tree CY such that:

CX ∪ CY ∪ {C, { (C, CX), (C, CY) } }

We denote this tree by the root node C.

To determine the classification of a vulnerability, we take the appropriate subgraph of the

master classification tree. A vulnerability belongs to every class captured by this subgraph. With

this approach, the classification of an implementation vulnerability equivalence class (IVEC) de-

pends on the classification of its characteristics:

DEFINITION 5.32: The vulnerability classification tree for an implementation

vulnerability equivalence class Z is the subgraph CZ ⊂ C such that each inter-

nal node of CZ is a valid a classification of Z .

The question then becomes, how do we determine if an internal class node is a valid clas-

sification of a vulnerability? The simplest way of determining the appropriate subgraph of Z is

to include any branch of the master classification tree that ends in a characteristic or symptom

in the basic sets of Z . For example, if X i is in the basic characteristic set of Z , we include every

branch of C that has X i as a leaf node.

86

However, this approach may be too simplistic. For example, consider the buffer overflow

characteristics introduced in section 5.3.7. A buffer overflow IVEC may require the x:jmps char-

acteristic, but not every IVEC that requires the x:jmps characteristic should be considered a

buffer overflow vulnerability.

Instead, we may wish to use a classification grammar to develop a more complex hierarchi-

cal structure, similar to approach taken in the prior protocol vulnerability work [WHA05]. This

allows us to define simple rules of when an internal node may be considered a classification

of a vulnerability. For example, an IVEC is only classified as a buffer overflow vulnerability in

Figure 5.1 when all three characteristic classes X:INPUT, X:MODIFY, and X:CONTROL apply.

We form this classification grammar and master characteristic tree observing the similarities

between the characteristic classes of the four buffer overflow IVECs. For example, observe the

similarity between the characteristic classes of direct and indirect executable buffer overflow

vulnerabilities:

{ x:buff, x:addr, x:inst, x:rval, x:jmps, x:exes } ← direct executable︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
X:BUFF X:CONTAINS X:MODIFY X:JUMP X:EXEC ← classes︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
{ x:buff, x:addr, x:fptr, x:jmph, x:exeh } ← indirect executable

This suggests that these IVECs should fall under the same node at a higher level of abstrac-

tion. This matches our intuition, since both are executable buffer overflow vulnerabilities. In

fact, all four of these IVECs share a common pattern. We illustrate this with the master charac-

teristic tree in Figure 5.1, which is developed from the classification grammar in Figure 5.2.

Notice that the resulting vulnerability classification tree for a direct executable buffer over-

flow vulnerability, highlighted in Figure 5.1, gets classified as a direct (X:DIRECT) executable

(X:EXECUTE) buffer overflow (X:BUFFER) vulnerability—matching our intuition.

§5.5 Prior Work

The Characteristic-Based Vulnerability Classification Scheme presented in this chapter is based

on the characteristic-based approach introduced by Bishop [BIS99], and keeps in the same spirit

as the original. We discuss this original work with respect to the Characteristic-Based Vulnera-

bility Classification Scheme in this section.

87

FIGURE 5.1: BUFFER OVERFLOW CL ASSIFICATION TREE

X
:
B
U
F
F
E
R

X
:
I
N
P
U
T

X
:
M
O
D
I
F
Y

X
:
C
O
N
T
R
O
L

X
:
O
V
E
R
F
L
O
W

X
:
C
O
N
T
A
I
N
S

X
:
D
I
R
E
C
T

X
:
I
N
D
I
R
E
C
T

X
:
E
X
E
C
U
T
E

X
:
D
A
T
A

x
:
b
u
f
f

x
:
a
d
d
r

x
:
i
n
s
t

x
:
t
y
p
e

x
:
r
v
a
l

x
:
v
v
a
l

x
:
f
p
t
r

x
:
v
p
t
r

X
:
J
U
M
P

X
:
E
X
E
C

X
:
P
A
T
H

x
:
j
m
p
s

x
:
j
m
p
h

x
:
e
x
e
s

x
:
e
x
e
h

x
:
p
a
t
h

ch
ar

ac
te

ri
st

ic

ch
ar

ac
te

ri
st

ic
cl

as
s

vu
ln

er
ab

ili
ty

su
b

tr
ee

x
:
c
h
a
r

X
:
C
H
A
R

X
:
C
H
A
R

o
r

ga
te

an
d

ga
te

Master characteristic tree for buffer overflow vulnerabilities, developed from our earlier
work [BIS10]. Characteristics, such as x:buff, are in lower case. Characteristic classes, such
as X:DIRECT, are in uppercase. The highlighted nodes represent the vulnerability classification
tree for a direct executable buffer overflow. Notice that both X:JUMP and X:EXECmust be present
in the basic characteristic set for a vulnerability to be classified as an executable buffer overflow,
labeled X:EXECUTE in the tree.

88

FIGURE 5.2: BUFFER OVERFLOW CL ASSIFICATION GRAMMAR

X:BUFFER ::= X:INPUT, X:MODIFY, X:CONTROL

X:INPUT ::= X:OVERFLOW, X:CONTAINS+

X:MODIFY ::= X:DIRECT | X:INDIRECT
X:CONTROL ::= X:EXECUTE | X:DATA

X:OVERFLOW ::= x:buff

X:CONTAINS ::= x:addr | x:inst | x:type
X:DIRECT ::= x:rval | x:vval

X:INDIRECT ::= x:fptr | x:vptr
X:EXECUTE ::= X:JUMP, X:EXEC

X:DATA ::= X:PATH

X:JUMP ::= x:jmps | x:jmph
X:EXEC ::= x:exes | x:exes
X:PATH ::= x:path

Buffer overflow characteristic classification grammar, developed from Bishop et al. [BIS10]. For
example, every buffer overflow IVEC, captured by X:BUFFER, contains an X:INPUT, X:MODIFY,
and X:CONTROL component. See Figure 5.1 for the resulting characteristic classification tree.

We add a hierarchy to the original characteristic-based approach, without compromising

the five properties proposed in the original work. For example, the original work stated that sim-

ilar vulnerabilities should be classified similarly. We classify vulnerability equivalence classes

based on characteristics and symptoms. If these vulnerabilities share characteristics or symp-

toms, they will be classified similarly.

Another property in the original work was that vulnerabilities should be able to fall into

multiple classes. Our hierarchical approach to classification allows vulnerabilities to fall into

multiple classes. For example, the characteristic classification tree in Figure 5.1 illustrates the

classification of a direct executable buffer overflow, which calls under the X:BUFFER, X:DIRECT,

and X:EXECUTE classes.

The original work stated that classification should be primitive, well-defined, and based on

technical details. Given a basic characteristic set and basic symptom set in our classification

scheme, the classification of a vulnerability equivalence class meets this requirement. Our clas-

sification scheme is also well-defined in theory, although this depends on the quality of the char-

acteristic and symptom oracles in practice.

The Characteristic-Based Vulnerability Classification Scheme is also based on technical de-

tails due to our formalization of implementation vulnerabilities. Preconditions describe the

89

state, transition matrix, and tape of a Turing machine. In theory, characteristics are abstractions

of these technical details. In practice, this translates to properties of the system environment,

code, and memory.

§5.6 Summary

We introduced the Characteristic-Based Vulnerability Classification Scheme in this chapter. We

began by introducing the formal foundation for implementation vulnerabilities in a theoretical

environment. We focused initially on vulnerabilities in a single Turing machine, and expanded

this to cover a representative set of systems. We then discussed the impracticality of applying

our theoretical model in a realistic environment, and provided an abstraction of implementation

vulnerabilities for use in practical environments. We based the Characteristic-Based Vulnerabil-

ity Classification Scheme on these abstractions, adding layers of hierarchy to our classification

approach through classification grammars and trees. We demonstrate our approach by expand-

ing our previous work on buffer overflow vulnerabilities, and discuss how moving between theo-

retical and practical environments may affect the completeness and soundness of our approach.

Given well-formed approximations of the characteristic oracles, symptom oracles, and mas-

ter classification tree, the classification of individual IVECs will be consistent. This moves any

ambiguity in the classification process to the initial development process. While this process is

time consuming and potentially ad hoc, it only needs to be performed once and the results are

broadly applicable. Therefore, we accept this ambiguity for the sake of practicality.

The Characteristic-Based Vulnerability Classification Scheme allows us to address our pri-

mary objective by providing a repeatable and practical approach to classification. We use the

classification results from this scheme to inform our implementation vulnerability analysis in

the next chapter.

90

FIGURE 5.3: TERMINOLOGY AND NOTATION

Name Notation Reference

Representative System Set M = {M : . . . } 5.5 (p72)
System Precondition Set TM where M ∈ M 5.7 (p74)
System Violation Set UM where M ∈ M 5.8 (p74)

Precondition t ∈ PARTIAL(. . .) 5.2 (p69)
Violation u ∈ (VALID (M) 	 L(P)) 5.1 (p69)

Universal Precondition Set T =
⋃
(M , TM) ∀M ∈ M 5.9 (p74)

Universal Violation Set U =
⋃
(M ,UM) ∀M ∈ M 5.10 (p75)

Characteristic X = { (M , T) : M ∈ M and T ⊆ TM } 5.11 (p75)
Symptom Y = { (M , U) : M ∈ M and U ⊆ UM } 5.13 (p76)

System Oracle IM = 1 iff M ∈ M 5.6 (p73)
Characteristic Oracle X (X , M) = T iff (M , T) ∈ X 5.12 (p76)
Symptom Oracle Y (Y , M) = U iff (M , U) ∈ Y 5.14 (p76)

Implementation Vulnerability V = (T, U) 5.3 (p69)
Vulnerability Abstraction Z = (XT , YT) 5.21 (p80)

Basic Characteristic Set XT = { X i ∈ X : X (M , X i) ∩ T 6= ∅ } 5.19 (p79)
Basic Symptom Set YT = { Yi ∈ Y : Y (M , Yi) ∩U 6= ∅ } 5.20 (p79)

Universal Characteristic Set X s.t. ∀ X ∈ X. . . 5.17 (p78)
Sound Characteristic Set

⋂X (X , M) = ∅ ∀ M ∈ M 5.15 (p77)
Complete Characteristic Set

⋃X (X , M) = TM ∀ TM ∈ T 5.16 (p78)

Universal Symptom Set Y s.t. ∀ Y ∈ Y. . . 5.18 (p78)
Sound Symptom Set

⋂Y (Y , M) = ∅ ∀ M ∈ M 5.15 (p77)
Complete Symptom Set

⋃Y (Y , M) = UM ∀ UM ∈ U 5.16 (p78)

Master Classification Tree C = CX ∪ CY 5.31 (p85)
Master Characteristic Tree CX 5.29 (p85)
Master Symptom Tree CY 5.30 (p85)
Vulnerability Classification Tree CZ ⊆ C 5.32 (p85)

Summary of the terminology and notation used throughout chapter 5. NOTE: In general, a single
element is typeset in lowercase, whereas a set or tuple of elements is typeset in uppercase. For
example, t is a single precondition and T is a set of preconditions.

91

CHAPTER 6

Policy-Based Vulnerability Analysis

The Policy-Based Vulnerability Hierarchy, the Formal Implementation Vulnerability Model, and

the Characteristic-Based Vulnerability Classification Scheme provide the components necessary

for the Policy-Based Vulnerability Analysis Framework. We highlight how to use this framework

for implementation vulnerability analysis in this chapter.

§6.1 Introduction

The Policy-Based Vulnerability Hierarchy, the Formal Implementation Vulnerability Model, and

the Characteristic-Based Vulnerability Classification Scheme have standalone benefits, but are

designed to work together collectively. We take advantage of this in the Policy-Based Vulnerabil-

ity Analysis Framework to locate, analyze, and mitigate implementation vulnerabilities.

Consider the Policy-Based Vulnerability Hierarchy, which provides a policy-based definition

of an implementation vulnerability in chapter 4. An implementation vulnerability enables an

unequivocal policy violation between the configured and instantiated policy oracles. This sug-

gests that if we are able to approximate these policy oracles in practice, we could detect imple-

mentation vulnerabilities by searching for these policy violations.

However, we know from the Formal Implementation Vulnerability Model in Appendix A that

security is undecidable, and non-security is recognizable. In other words, we are unable to detect

the absence of a policy violation, but we are able to detect the presence of a policy violation.

The decidable problem of real-time security suggests a different way forward—by changing the

question from if a policy violation occurs to when a policy violation occurs.

This approach still runs into problems. Examining all of the possible partial traces to de-

termine if a system is real-time secure is computationally expensive, and working with Turing

92

machines is impractical. As a result, we turn to the Characteristic-Based Vulnerability Clas-

sification Scheme in chapter 5 to provide an abstraction of implementation vulnerabilities at

a more practical level. The characteristic-based approach also suggests a way to locate these

vulnerabilities—not by the policy violations they cause, but by their characteristics.

The Policy-Based Vulnerability Analysis Framework builds on the insights gained by each

of these components. Rather than attempting to locate and disable individual implementation

vulnerabilities, we concentrate on locating and disabling characteristics. We start by classifying

a large number of IVECs, and use those results in both the analysis and mitigation phases of the

framework.

§6.2 Analysis Framework

The Policy-Based Vulnerability Analysis Framework uses a policy-based notion of a vulnerability

and characteristic-based approach to classification for implementation vulnerability analysis in

practical settings. The objective of this framework is to locate, analyze, and mitigate implemen-

tation vulnerabilities in a given environment.

We break this process into three phases: preparation, analysis, and mitigation. The prepa-

ration phase determines the scope of the global policy event space E and approximates the con-

figured oracle for E. The analysis phase identifies a set of confirmed characteristics to discover

implementation vulnerability equivalence classes (IVECs) and approximate the instantiated or-

acle. Finally, the mitigation phase attempts to mitigate the discovered IVECs by disabling their

associated characteristics.

We summarize the entire process in Figure 6.1. Each phase consists of several complex steps,

and must overcome several practical issues. We dive deeper into each of these phases in the next

sections.

§6.2.1 Phase 1: Preparation

The preparation phase involves two primary steps: defining the scope of the global policy event

space, and approximating the configured oracle for the policy events in the global policy event

space. Whether we are able to approximate the configured and instantiated oracles depends on

the global policy event space defined in this phase.

93

FIGURE 6.1: ANALYSIS FRAMEWORK OVERVIEW

start

determine
analysis scope

approximate
configured oracle

phase 2:
analysis

identify target
characteristics

mitigate target
characteristics

vulnerability
mitigation

end

E E,Pco

X T ⊆ XX D

Z

Z′ ⊆ Z

if |Z′ | > n

Z′

refine E

phase 1: preparation

phase 3: mitigation

X D : disabled characteristics Z : confirmed IVECs
X Y : target characteristics Z′: unmitigated IVECs

A high-level diagram of the Policy-Based Vulnerability Analysis Framework. The analysis phase
is expanded further in Figure 6.2. A more detailed key is available in Figure 6.3.

There are many factors that must be considered when defining the global policy event space,

and several obstacles to approximating the configured oracle. We discuss these issues in detail

in section 6.3. This phase does not take any input, and produces the global policy event space E

and the configured policy oracle Pco as output.

§6.2.2 Phase 2: Analysis

The analysis phase is the most time consuming and complex. The primary purpose of this

phase is to approximate the instantiated oracle and identify a set of implementation vulnerabil-

ity equivalence classes present in the environment. We do this in four analysis steps, including

instantiated oracle analysis, characteristic analysis, environment analysis, vulnerability analysis.

Each of these steps may be iterated multiple times until the instantiated oracle has been fully ap-

proximated or until some threshold has been reached.

This phase takes as input the global policy event space E and configured policy oracle Pco,

generates an approximation of the instantiated oracle Pin, and outputs a set Z of known IVECs

complete with characteristics and symptoms. We provide more detail in section 6.4.

94

§6.2.3 Phase 3: Mitigation

In the mitigation phase, we take the set of IVECs from phase 2 and attempt to mitigate the vul-

nerabilities by mitigating their associated characteristics. These characteristics should ideally

be disabled in the environment, but this may not always be practical. This phase ends when the

number of unmitigated vulnerabilities drops below some threshold n , which is ideally set to zero.

There is no specific output of this phase, except possibly the set of recommended mitigations.

We discuss this phase in more detail in section 6.5.

In an abstract sense, this mitigation process addresses the real-time security of our environ-

ment. Recall from section A.3.3 that real-time security focuses on determining when a system is

non-secure. By identifying when our environment is not secure and mitigating the risks associ-

ated with those vulnerabilities, we are reducing the instances that our environment is known to

be non-secure.

§6.3 Phase 1: Preparation
We summarize the preparation phase in section 6.2.1, which identifies the scope of the imple-

mentation vulnerability analysis. All together, this phase consists of the following steps:

1. Analysis Scope. Identify the system(s) and security mechanism(s) to analyze

and the associated global policy event space.

2. Configured Oracle Approximation. Approximate the configured policy oracle

for each of the policy events in the global policy event space.

There is some iteration possible in this phase, but in most cases this iteration is not neces-

sary. Once we have identified the analysis scope, we move on to phase 2.

§6.3.1 Step 1: Define Global Policy Event Space

An important factor in whether implementation vulnerability analysis is practical will be the

scope of the global policy event space. Before we are able to specify this scope, however, we must

define the target environment. This includes any systems and security mechanisms that will be

included in the analysis process. This set should be kept to a small† number of representative

systems, or the configured oracle may be too large and complex to feasibly approximate in step 2.

† We may even wish to limit our analysis to a single system.

95

We do not need to include policy events that result in an unknown response, since our ana-

lysis is focused on unequivocal policy violations. The configured oracle is only able to return

a policy decision for system-defined subjects, objects, and actions, allowing us to restrict the

global policy event space accordingly. However, due to the complexity of approximating the in-

stantiated and configured oracles, we may have to further restrict the global policy event space.

For example, we may decide to focus on the subset of objects protected by the operating system

that may affect program flow and the set of actions capable of manipulating those objects.

When this step is complete, we should have a global policy event space E that is a subset of

the system-defined subjects, objects, and actions in the environment. We output this set E to

the next step.

§6.3.2 Step 2: Approximate Configured Policy Oracle

The next step is to approximate the configured policy oracle for the policy events in the global

policy event space. We demonstrate in Appendix B.1 how to approximate the configured oracle

for ACM-based security mechanisms. In general, we should be able to approximate the config-

ured oracle by examining the current configurations of each system and security mechanism in

the environment.

However, security mechanisms often interact in a complex environment with a porous secu-

rity perimeter. We will need to limit our scope of analysis for this approximation to be practical,

limiting the number of security mechanisms we may consider in the global policy event space.

If the oracle approximation is too time consuming, we may return to step 1 and further reduce

the global policy event space. Once the configured oracle approximation is complete, we output

both the global policy event space E and configured oracle Pco to the next phase of the Policy-

Based Vulnerability Analysis Framework.

§6.3.3 Phase 1 Summary

Phase 1 focuses on providing the scope of analysis, by restricting the global policy event space

and providing an approximation of the instantiated policy oracle. The oracle approximation may

be a complex process depending on the environment.

96

FIGURE 6.2: PHASE 2: ANALYSIS

Z: Confirmed IVECs X: Confirmed Characteristics XS : Suspected Characteristics

instantiated
oracle analysis

characteristic
analysis

environment
analysis

vulnerability
analysis

external
expertise

X

X, X i ∈ XS

X

Z = (X , Y)

E,Pco

Z
X

S =
∅ X

i 6= X

Z = ∅STEP 1

STEP 2

STEP 3

STEP 4

nnnninforms

Diagram for the analysis phase. The process iterates until no more suspected characteristics are
added, or we are confident in the Pin oracle approximation.

§6.4 Phase 2: Analysis

Once the preparation phase is complete, we are able to start our iterative analysis. The analysis

phase attempts to approximate the configured oracle and determine a set of confirmed IVECs.

We break this process into four steps:

1. Instantiated Oracle Analysis. Updates approximation of the instantiated or-

acle given the set of confirmed vulnerabilities.

2. Characteristic Analysis. Updates set of suspected characteristics based on

the set of confirmed characteristics.

3. Environment Analysis. Determines whether a suspected characteristic exists

in the system(s) and security mechanism(s) in the environment.

4. Vulnerability Analysis. Determines whether an IVEC exists based on the up-

dated set of confirmed characteristics.

We continue to iterate between these steps until either we are satisfied with the approxima-

tion of the configured oracle or we no longer have an suspected characteristics to examine. We

summarize these steps in Figure 6.2.

97

§6.4.1 Step 1: Instantiated Oracle Analysis

The first time we enter this step, we receive the global policy event spaceE and the approximated

configured oracle as input from the preparation phase. We initialize the setZ of confirmed IVECs

and the set X of confirmed characteristics to the empty set. Until there is a non-empty set of

IVECs, we are unable to approximate the instantiated oracle. After initialization, we output the

set X to the next step.

The next iteration of this step will receive an new IVEC Z = (X , Y) from step 4. To approx-

imate the instantiated oracle, we examine the symptoms of these IVECs and determine how

they affect the operation of the security mechanism(s). The IVEC may or may not represent

an actual risk, depending on the configured oracle. For example, suppose we are able to infer

that Pin(E) = no from the basic set Y of symptoms. It is possible that the configured oracle

does not allow this event, and thus no implementation vulnerability exists for this environment

and security policy. However, if the configured oracle response is yes, then there exists an im-

plementation vulnerability in the environment. We add this IVEC to our set Z and continue to

the next step. Even if Z does not represent an implementation vulnerability in the environment,

we do not remove the set X from the set X of confirmed characteristics.†

Once we are satisfied with the approximation of the implementation oracle, we may discon-

tinue the analysis phase and output the final set Z of confirmed vulnerabilities. Otherwise, we

output the set X to the next step. Ideally, we continue this process until all policy events have

been approximated.

§6.4.2 Step 2: Characteristic Analysis

This step receives as input from step 1 the set X of confirmed characteristics. Assume for the

moment that this set is not empty. We compare the set of confirmed characteristics with pre-

existing classification results, captured in Figure 6.2 as the “external expertise” cloud. We are

able to determine which characteristics tend to occur together, and build a set XS of suspected

characteristics to investigate. There are characteristics that we believe have a high likelihood of

† These characteristics may lead to another IVECs in the system, and therefore should never be removed from the set
of confirmed characteristics.

98

occurring in the environment. For example, the x:jmps and x:exes characteristics usually occur

together. Confirming one of these two characteristics is a good indicator that the other exists.

However, on the first iteration, the set of confirmed characteristics is empty. We run into

a “chicken or the egg” problem here. We need the set X to form our set XS of suspected char-

acteristics. These suspected characteristics let build the set Z of IVECs, and hence form the

set X. We avoid this never ending cycle by relying on external expertise to inform our initial set

of suspected characteristics. This may include previously confirmed characteristics in similar

environments, or in a worst case scenario, all known characteristics.

From the set of suspected characteristics, we choose one to investigate. This may be a char-

acteristic chosen at random from the set, or one we believe to be particularly likely to exist. We

output this characteristic X i to the next step and remove it from the set XS of suspects. If the

set of suspected characteristics reaches zero and we are unable to repopulate it using external

knowledge, then we must return to step 1 and end the analysis phase prematurely.

§6.4.3 Step 3: Environment Analysis

Step 3 focuses on confirming whether X i exists in the environment. To confirm the existence

of certain characteristics, we may need access to the software, hardware, and source code for

all of the systems and security mechanisms under consideration. This may also require tools

such as source code analyzers. Finally, analysts must have an in-depth understanding of both

the environment and the analysis tools to determine whether a characteristic exists.

Once we have confirmed the presence of the characteristic X i , we add X i to the set X of

confirmed characteristics. We output the new set X to the next step. If we are unable to confirm

the characteristic X i exists in the environment, we return to step 2. This shortcut, depicted by a

dashed line in Figure 6.2, allows for a new suspected characteristic to be chosen without having

to iterate through steps 4 and 1 again.

§6.4.4 Step 4: Vulnerability Analysis

The vulnerability analysis step examines the set X of confirmed characteristics from step 3, and

determines if there is a new IVEC possible in the environment. This is done by comparing the

99

set X with previously-classified IVECs. If we discover a Z = (X , Y) such that X ⊆ X, we verify

that Z is present in the environment. Once verified, we output Z to step 1.

This phase receives the set X as input from step 3 only when a new characteristic has been

added. Since IVECs are unique, there will only ever be one new IVEC discovered in this phase. If

no such IVEC is discovered, we skip step 1 and take a shortcut directly to step 2.

§6.4.5 Phase 2 Summary

We summarize each step in phase 2 in Figure 6.2. This phase of the Policy-Based Vulnerability

Analysis Framework is highly iterative, potentially continuing until all resources have been ex-

hausted. However, at the end of the analysis phase, we have a setZ of confirmed IVECs complete

with characteristics and symptoms.

§6.5 Phase 3: Mitigation
The final phase in the Policy-Based Vulnerability Analysis Framework is the mitigation phase. We

attempt to mitigate the vulnerabilities discovered in phase 2 by disabling the underlying charac-

teristics. We break this process into three steps:

1. Characteristic Identification. Identifies a target set of the most common or

dangerous characteristics.

2. Characteristic Mitigation. Identifies how to disable or partially-disable each

characteristic in the target set.

3. Vulnerability Mitigation. Compares the set of disabled or partially-disabled

characteristics with the set of known vulnerabilities.

We repeat this process with characteristics from the set of unmitigated vulnerabilities until

all vulnerabilities are mitigated, or until we reach some threshold (depicted as n in Figure 6.1).

§6.5.1 Step 1: Characteristic Identification

We maximize the impact our mitigations have by focusing on those characteristics that will dis-

able the largest number of vulnerabilities, or are associated with the most severe symptoms. To

build the set X T of target characteristics, we first identify a subset of the most commonly occur-

ring characteristics from the set Z. Let ZX i be the set of IVECs containing characteristic X i :

ZX i = {Z = (X , Y) : X i ∈ X }

100

Let g ≤ |Z | be an integer threshold. We build the set of common characteristics Xg as follows:

Xg = { X i ∈ X : |ZX i | ≥ g }

Disabling a characteristic from the set Xg will help mitigate the affects of at least g different

IVECs. However, we are also concerned with characteristics that are associated with particularly

troublesome symptoms. For example, we may wish to focus on blocking a vulnerability that

disables privileges for all subjects in an environment. Therefore, we also build a set of target

symptoms Y T from the setY of confirmed symptoms. To determine which symptoms we should

target, we must look at the policy violations captured by these symptoms. For example, we may

only be interested in symptoms that escalate privileges, or disable privileges for a large set of

subjects.

We use the set Y T of target symptoms to build a set Z T of target IVECs. Informally, we in-

clude any IVEC that shares a symptom with the target set. Specifically:

Z T = {Z = (X , Y) : Y ∩ Y T 6= ∅ }

We build the resulting set of target characteristics, based on the set of target symptoms, by taking

the union of all characteristics from the set of target vulnerabilities. More formally:

XZ T =
⋃

(X ,Y)∈Z T

X

This allows us to include characteristics associated with the most troublesome symptoms. We

form the entire set X T of target characteristics as follows:

X T = X g ∪ XZ T

Ideally, the set of target characteristics should be kept to a practical size. If we end up with

too many characteristics to analyze, we can reduce the size of the target set by increasing the

threshold g or reducing the size of YT . Once an appropriate set of target characteristics has been

identified, we output X T to the next step.

§6.5.2 Step 2: Characteristic Mitigation

This step of the mitigation process attempts to mitigate all of the characteristics in the target

set. This step receives as input the set X T , and outputs the set of disabled or partially disabled

characteristics X D to the next step.

101

Ideally, we completely disable each characteristic in the target set such that X D = X T . How-

ever, in practice, this process is more complex than simply disabling or removing the character-

istic. We must compare each characteristic with known defenses, and determine whether these

defenses are viable in our environment. This may involve modifications to the code, installing

additional security mechanisms, or changing the security mechanisms in use. The defenses

themselves may only partially disable the characteristic, and may require extensive resources.

In cases where an appropriate system-level mitigation is not available, we must resort to

higher-level procedures to address these characteristics. For example, we may have to shift from

a “disable and prevent” mindset to a “monitor and react” approach to dealing with some of these

characteristics. We only include those characteristics that we are able to appropriately mitigate

in the set X D of characteristics, which we output to the next step.

§6.5.3 Step 3: Vulnerability Mitigation

This step compares the set Z of known IVECs with the set X D of mitigated characteristics to

form a set Z′ of unmitigated vulnerabilities. Recall from chapter 5 that disabling a characteristic

disables the associated vulnerability. Therefore, we determine if an IVEC is mitigated by seeing

if any characteristics from the basic characteristic set are mitigated in step 2. Specifically, the set

of mitigated vulnerabilities is the set Z D such that:

Z D = {Z = (X , Y) ∈ Z : X ∩ X D 6= ∅ }

We form the set of unmitigated vulnerabilities as follows:

Z′ = Z \ Z D

Ideally, Z′ = ∅ and we are able to discontinue our analysis. Otherwise, we must determine

whether to continue iterating through this phase to reduce the size of Z′. We identify a thresh-

old n and continue iterations until either |Z′ | ≥ n or we are no longer able to mitigate any more

characteristics in step 2.

§6.5.4 Phase 3 Summary

This phase of the Policy-Based Vulnerability Analysis Framework focuses on mitigating the dis-

covered IVECs by mitigating the associated characteristics. We may iterate through this phase

multiple times, until we are satisfied by the mitigations identified in step 2.

102

§6.6 Analysis Example

We illustrate this implementation vulnerability analysis framework with a hypothetical exam-

ple. We use the same electronic voting environment introduced in section 4.4. A registered voter

makes his or her selections on an electronic touch screen device, which prints those selections

onto a paper ballot. The registered voter then places this ballot in a ballot box, which is taken

by the poll workers to the election headquarters for counting. We focus our analysis on the elec-

tronic ballot printers. We simplify the operation of these electronic ballot printers so that we may

demonstrate the entire analysis process.

§6.6.1 Phase 1: Preparation

The first step in the preparation phase is to identify the global policy event space. Recall that

the configured oracle is only able to return a policy decision for system-defined subjects, ob-

jects, and actions. As such, we only need to consider the set of subjects, objects, actions, and

conditions defined by an electronic ballot printer for the global policy event space.

There are two user accounts defined on this device: root and anon. We also include the

process init in our universal set of subjects and objects. This process runs when the device is

powered on, and handles most of the functionality on the ballot printer. There is a single system-

defined ballot object, and two actions that may be performed on that object: config() and

print() to configure or print the ballot respectively. We also define two other actions: auth()

to authenticate as a particular user account, and input() to get a password string from the user.

We specify the Boolean conditions in the universal condition set as needed in our analysis.

With the global policy event space defined, we must now approximate the configured oracle.

We assume a closed policy; a policy event is not allowed unless otherwise specified. For example,

the electronic touch screen ballot printer is configured such that the root user account requires

a password, but the anon user account does not. The set of allowed policy events are:

Pco(init, root, auth(), input() ≡ passwd) = yes

Pco(init, anon, auth(), true) = yes

We are primarily concerned with how the ballot object may be manipulated. The printer

is configured such that only the root user account is allowed to perform the config() on the

103

ballot object. However, both the root and anon user accounts may perform the print() action

on the ballot object, which triggers the device to print the current set of selections onto a paper

ballot. The allowed policy events include:

Pco(root, ballot, config(), true) = yes

Pco(root, ballot, print(), true) = yes

Pco(anon, ballot, print(), true) = yes

This completes our approximation of the configured oracle for the global policy event space.

We output E and Pco to the next phase of this framework.

§6.6.2 Phase 2: Analysis

The analysis phase iterates between four steps: instantiated oracle analysis, characteristic ana-

lysis, environment analysis, and vulnerability analysis. In the first iteration of this process, we

do not have the necessary information to perform an instantiated oracle analysis. As such, we

initialize the set of confirmed IVECs and characteristics to the empty set, and move to the char-

acteristic analysis step.

The first time we perform characteristic analysis, we must draw from an external source to

initialize the list of suspected characteristics. We assume we have access to a database with the

characteristic-based classifications of several implementation vulnerability equivalence classes.

The ballot printer software is written in the C language. Therefore, we initialize the set of sus-

pected characteristics to include all characteristics that are known to exist in C programs. This

includes the set of buffer overflow characteristics developed in section 5.3.7.

The next step, environment analysis, confirms whether the suspected characteristics exist

in the environment. In this example, suppose we discover that the x:buff characteristic exists

anywhere the user is allowed to enter a write-in candidate. We know this characteristic is associ-

ated with buffer overflow vulnerabilities, and begin to focus our search for those characteristics.

We also know that with this architecture, the characteristics associated with the X:CONTAINS and

X:EXECUTE characteristic classes exist. At the end of this step, we are able to confirm that several

of the characteristics for a buffer overflow vulnerability exist in the environment. The next step

is to determine whether a specific buffer overflow vulnerability exists.

104

The third step in this process is to take the set of confirmed characteristics in our environ-

ment, and determine if these lead to an actual vulnerability. This requires is to match these

characteristics to specific instances in the code. Suppose we discover that the init process sets

a Boolean flag isroot to true when the root user account properly authenticates. Whether the

config() action may be triggered depends on this flag. By overflowing the buffer for the first

write-in candidate, an attack is able to change the contents of this flag. Specifically, we verify

specific instances of the following buffer overflow characteristics:

• x:buff exists for the write-in buffer

• x:path exists for the variable isroot

• x:type exists for the write-in user input

• x:vval exists for the variable isroot

This matches the definition of a direct data buffer overflow IVEC from section 5.3.7. Therefore,

we are able to add this buffer overflow vulnerability to our list of confirmed IVECs.

Once we have confirmed the presence of an IVEC, we must update our approximation of the

instantiated oracle. In this case, the direct data buffer overflow vulnerability allows the anon user

account to trigger the config() action. Therefore:

Pco(anon, ballot, config(), true) = no

Pin (anon, ballot, config(), true) = yes

Once we are satisfied with the approximation of the instantiated oracle, we may move on to

the mitigation phase of this framework.

§6.6.3 Phase 3: Mitigation

In the analysis phase, we confirmed the presence of a direct data buffer overflow IVEC. We at-

tempt to mitigate this confirmed vulnerability in the final phase of this analysis framework. We

begin by examining the characteristics associated with this IVEC. Normally, we may have to pri-

oritize which characteristics we consider for mitigation. However, for this hypothetical example,

we may consider all four of the characteristics: x:buff, x:type, x:vvar, x:path.

There are several changes that may be made to the source code on the ballot printer to dis-

able this vulnerability. The first should be to address the buffer overflow bug and remove the

x:buff characteristic. While we only need to disable a single characteristic, we may also wish

105

to address the others as well. For example, we may restrict the type of characters that may be

entered by the user for write-in candidates. This mitigates the characteristic x:type by reducing

the ability of an attacker to upload the same data type as the flow variable into memory.

Until the code changes are completed and installed on this device, we may also decide to

enact new security procedures to limit, detect, and react to successful attacks. For example, we

attempt to detect a successful attack at the polling place by emphasizing the need for voters

to verify their selections on the ballot. These procedures mitigate the discovered vulnerability

by disabling related policy events at higher levels in the policy hierarchy. See section 4.4 for an

example of this type of higher-level analysis.

§6.6.4 Example Summary

We demonstrated the Policy-Based Vulnerability Analysis Framework using the scenario devel-

oped in chapter 4 and characteristics introduced in chapter 5. If the same IVEC database is used

to develop the set of suspected characteristics, the set of confirmed characteristics should be

consistent between different analysts given enough time. However, the order that characteris-

tics and IVECs are confirmed will vary from analyst to analyst in practice. If the analysis is cut

short due to limited resources, the final set of confirmed IVECs may differ slightly.

§6.7 Summary

This chapter introduces the Policy-Based Vulnerability Analysis Framework, which is comprised

of the Policy-Based Vulnerability Hierarchy, Formal Implementation Vulnerability Model, and

Characteristic-Based Vulnerability Classification Scheme. The Policy-Based Vulnerability Ana-

lysis Framework consists of three primary phases:

1. Preparation

2. Analysis

3. Mitigation

The preparation phase identifies the scope of the global policy event space and approximates

the configured oracle. The analysis phase identifies a set of implementation vulnerability equiv-

alence classes by approximating the instantiated oracle in an iterative process. Finally, the miti-

106

FIGURE 6.3: TERMINOLOGY AND NOTATION

Name Notation Reference

Global Policy Event Space E = S× O× A× B 3.3 (p39)

Configured Policy Oracle Pco 4.5 (p48)
Instantiated Policy Oracle Pin 4.6 (p49)

Implementation Vulnerability
Equivalence Class (IVEC) Z = (X , Y) 5.22 (p80)

Characteristics X 5.11 (p75)
Symptoms Y 5.13 (p76)

Confirmed Characteristics X
Suspected Characteristics XS §6.4 (p96)
Targeted Characteristics X T §6.5 (p99)
Disabled Characteristics X D §6.5 (p99)

Confirmed IVECs Z §6.4 (p96)
Unmitigated IVECs Z′ §6.5 (p99)

Summary of the terminology and notation used throughout chapter 6.

gation phase attempts to mitigate the discovered vulnerabilities by disabling the associated char-

acteristics. Figure 6.1 and Figure 6.3 summarize the overall framework.

We have designed the Policy-Based Vulnerability Analysis Framework to be both repeatable

and practical, but our results demonstrating these properties are preliminary. We discuss how

well this framework meets our objectives in the next chapter.

107

CHAPTER 7

Conclusion

This dissertation introduces the Policy-Based Vulnerability Analysis Framework to provide a re-

peatable and practical framework for vulnerability analysis. We summarize this framework and

our contributions below, reflect on how well we met our original objectives, and discuss direc-

tions for future research.

§7.1 Summary

This dissertation introduces the Policy-Based Vulnerability Analysis Framework, which provides

a policy-based analysis framework for the discovery and mitigation of implementation vulnera-

bilities. We build this framework from three major components: the Policy-Based Vulnerability

Hierarchy, the Formal Implementation Vulnerability Model, and the Characteristic-Based Vul-

nerability Classification Scheme.

The Policy-Based Vulnerability Hierarchy in chapter 4 defines a security policy at four levels

of abstraction: ideal, feasible, configured, and instantiated. We explore the gaps between these

levels of a security policy to define three different types of a vulnerability: inherent, configura-

tion, and implementation. This provided a hierarchical policy-based notion of a vulnerability

that is able to capture both security procedures and security mechanisms.

We examine the lower levels of the Policy-Based Vulnerability Hierarchy with the Formal

Implementation Vulnerability Model in Appendix A. This model defines a security policy as a

language of authorized configurations, instead of a partition of states. We use this model to

motivate a shift in thinking from determining if a system is secure with respect to a security

policy, to determining when a system is non-secure.

The Formal Implementation Vulnerability Model provides the formal foundation for the

Characteristic-Based Vulnerability Classification Scheme in chapter 5. We formally define im-

108

FIGURE 7.1: TERMINOLOGY OVERVIEW

Absolute
Vulnerability

Ideal
Policy Oracle

Feasible
Policy Oracle

Configured
Policy Oracle

Instantiated
Policy Oracle

Inherent
Vulnerability

Configuration
Vulnerability

Implementation
Vulnerability

Preconditions
Policy

Violations

Characteristics Symptoms

Implementation Vulnerability
Abstraction (IVAB)

Implementation Vulnerability
Equivalence Class (IVEC)

Policy-Based
Vulnerability Hierarchy

Formal Implementation
Vulnerability Model

Characteristic-Based
Vulnerability Classification

An overview of the major concepts introduced in this dissertation. Most of this terminology is
introduced in chapter 4 and chapter 5.

plementation vulnerabilities using preconditions and policy violations, and then abstract these

notions to characteristics and symptoms. We rely on these reversible levels of abstraction to

move away from the “perfect knowledge assumption” that comes with theoretical environments,

and perform hierarchical characteristic-based vulnerability classification at a practical level. We

use these results in the framework to inform where we should focus our vulnerability analysis.

The Policy-Based Vulnerability Analysis Framework integrates these components into a co-

hesive implementation vulnerability analysis framework in chapter 6. The entire process con-

sists of three phases: preparation, analysis, and mitigation. The preparation phase identifies the

scope of the global policy event space, and approximates the configured oracle. The analysis

phase iterates between instantiated oracle analysis, characteristic analysis, environment ana-

lysis, and vulnerability analysis, to identify confirmed implementation vulnerability equivalence

classes and their associated characteristics and symptoms. The mitigation phase attempts to

mitigate these discovered implementation vulnerability equivalence classes by disabling preva-

lent or severe characteristics.

109

§7.2 Contributions

This dissertation introduces the Policy-Based Vulnerability Hierarchy, Formal Implementation

Vulnerability Model, and Characteristic-Based Vulnerability Classification Scheme, and inte-

grates these components into a cohesive framework for implementation vulnerability analysis.

We discuss the contributions of each of these components and the entire framework in this sec-

tion, and reflect on how these contributions address our overall objectives.

§7.2.1 Vulnerability Hierarchy

The Policy-Based Vulnerability Hierarchy reflects the different levels of security policy encoun-

tered in practice, and captures both security procedures and security mechanisms. This ap-

proach separates intention from implementation, providing valuable insight into where and why

vulnerabilities occur without breaking well-established intuition. As a result, we are able to use

the Policy-Based Vulnerability Hierarchy to inform the type of techniques we may use to prevent,

mitigate, or defend against these vulnerabilities. For example, Klein et al. used formal verifica-

tion to eliminate the class of implementation vulnerabilities for the seL4 microkernel [KLE09].

However, the work on enforceable security policies illustrates that only a subset of security pol-

icy is enforceable [SCH00, HAM06]. As a result, vulnerabilities at higher-levels in the hierarchy

may be impossible or impractical to fully eliminate.

The Policy-Based Vulnerability Hierarchy expands the Unifying Policy Hierarchy [CAR06].

We discuss the specific contributions we made to the original model in section 4.5. This hierar-

chy allows us to meet our primary objective by providing a policy-based notion of a vulnerability.

§7.2.2 Vulnerability Model

The Formal Implementation Vulnerability Model demonstrates a different approach for formally

defining a security policy for a state machine. Specifically, we define a security policy as a parti-

tion of configurations instead of a partition of states. This approach allows us to express a secu-

rity policy at this level of abstraction without having to modify the underlying state machine, and

better models how a security policy is expressed in a realistic environment. As such, the Formal

Implementation Vulnerability Model allows us to achieve our primary objective by providing a

strong theoretical foundation for our framework that reflects practice.

110

§7.2.3 Vulnerability Classification

The Characteristic-Based Vulnerability Classification Scheme builds on prior work to provide a

hierarchical characteristic-based approach for classification of implementation vulnerabilities

at a practical level of abstraction [BIS99, WHA05]. We introduce the perfect knowledge assump-

tion, which makes explicit the theoretical assumptions that may not hold in a realistic environ-

ment. We use reversible layers of abstraction to develop characteristics and symptoms, and

move away from the perfect knowledge assumption. We specify where ambiguity may be in-

troduced in this process, and the affects this has on the soundness and completeness of this

model. Finally, we expand on our previous buffer overflow work [BIS10] by providing revised

buffer overflow characteristics and a master characteristic tree.

The Characteristic-Based Vulnerability Classification Scheme allows us to achieve our ob-

jectives by providing a practical level of abstraction for implementation vulnerabilities, and re-

peatability with reversible layers of abstraction.

§7.2.4 Vulnerability Analysis

The Policy-Based Vulnerability Analysis Framework brings together the policy-based approach

of Carlson [CAR06], our earlier theoretical model [ENG08B], the characteristic-based approach of

Bishop [BIS99], and the hierarchical approach of Whalen et al. [WHA05] into a single, cohesive

framework for practical and repeatable implementation vulnerability analysis. To achieve this

cohesion, we have refined each of these approaches to use consistent terminology based on a

strong theoretical foundation.

The Policy-Based Vulnerability Analysis Framework enables targeted implementation vul-

nerability analysis for stable, small-scale environments. As a result, we are able to address the

gap between repeatability and practicality, and encapsulate where and when ambiguity is intro-

duced when moving between theoretical and realistic settings.

§7.3 Future Work

We meet our objectives with the Policy-Based Vulnerability Analysis Framework in this disserta-

tion, but there are still several interesting research directions to pursue. We discuss these direc-

tions for future research in this section.

111

§7.3.1 Theoretical Directions

We used the Formal Implementation Vulnerability Model in chapter 5 to provide a theoretical

foundation for implementation vulnerabilities, and expand this model in Appendix A to demon-

strate the computability of security. Exploring additional theoretical results using this model is

outside the scope of this dissertation, but various opportunities for future research exist.

For example, one possible direction for future research is to explore other theoretical system

models. We used Turing machines to model the computational capability of modern systems.

However, in practice, systems do not have infinite time and memory for computations. Instead,

we could use linear bounded automata as a foundation for our vulnerability model. The size of

the tape for these automata is linearly bounded by the length of the input, and have a finite num-

ber of distinct configurations [SIP97, p178]. Some problems, such as the acceptance problem,

are undecidable for Turing machines but decidable for linearly bounded automata [SIP97, p177].

Whether we are able to decide if a system is secure with respect to a security policy depends

both on the type of machine and computability class of the security policy. Another future re-

search direction is to investigate other computability classes for security policies. For example,

we use regular languages for the policy condition examples in chapter 3.

Even if a security problem is decidable, it may not be tractable. We investigate security,

non-security, and real-time security in Appendix A, and find that real-time security is decidable.

However, real-time security is likely intractable. We may wish to extend this research to cover

time and space complexity as well, and explore other problems in security in search for problems

that are both decidable and tractable in practice.

§7.3.2 Vulnerability Database

We are able to improve our ability to perform targeted implementation vulnerability analysis

in chapter 6 by providing more characteristic-based classification results. An important future

direction for this research is to develop a database of vulnerabilities and their resulting classi-

fication for a large number and wide array of vulnerabilities. We may use as a starting point

the protocol vulnerability classification work introduced in chapter 2, the work on buffer over-

flow characteristics introduced in chapter 5, and several existing vulnerability databases such as

the Common Weakness Enumeration (CWE) Dictionary [CWE09], the Common Attack Pattern

112

Enumeration and Classification (CAPEC) Catalog [CAP10], and the Database Of Vulnerabilities,

Exploits, and Signatures (DOVES) [DOV98].

§7.3.3 Extended Case Study

We demonstrated preliminary results that the Policy-Based Vulnerability Analysis Framework is

capable of repeatable analysis results in a realistic environment. The next step is to apply the

framework on a larger scale with an extended case study.

However, we wish to avoid the obstacles associated with performing this type of analysis

on a live environment. Instead, we focus on applying the framework to a detailed, hypothetical

environment. We propose forming four disjoint teams, consisting of an environment team, and

three analysis teams: alpha, beta, and control. The environment team develops the hypothetical

environment, complete with specific open-source systems and software, procedures, and high-

level security policies. Each analysis team receives the same information and analysis toolkits

from the environment team. Both the alpha and beta analysis teams must perform an inde-

pendent analysis using the Policy-Based Vulnerability Analysis Framework, whereas the control

team may use any other framework. The environment team collects and compares the analysis

results, examining both the number and consistency of the results across all three teams.

Electronic voting provides an ideal environment for this type of case study, especially since

there has already been work on the detailed definition of an election process [SIM08]. For a

specific county, the environment is generally well-defined with specific security requirements,

specific operating environments (including both the polling places and election headquarters),

and specific subjects, actions, and objects. Additionally, there are several open-source electronic

voting systems available for analysis.

113

FIGURE 7.2: GENERAL NOTATION (ALPHABETICALLY)

Aa a action, A universal action set
Bb b Boolean condition, B universal condition set
Cc C classification tree (vulnerability, characteristic, or symptom),

C master classification tree
Dd d ∈ D policy decision
Ee E policy event, E global policy event space
Ff f function, F computable function
Gg G graph
Hh h configuration, H computation history
Ii i integer e.g. i th element, I system oracle
Jj j integer e.g. j th element

Kk k integer e.g. k th element
Ll L language

Mm M Turing machine,M representative system set
Nn n size (usually of a set or string)
Oo o object,O universal object set
Pp P policy set, P policy oracle
Qq q Turing machine state, Q set of states
Rr r ∈ R policy response
Ss s subject, S policy statement, S universal subject set
Tt t precondition, T precondition set, T system precondition set
Uu u policy violation, U policy violation set, U system violation set
Vv V implementation vulnerability

Ww w word or input string
Xx x ∈ Σ symbol or character, X characteristic or characteristic set,

X characteristic oracle, X universal characteristic set
Yy Y symptom or symptom set, Y symptom oracle,

Y universal symptom set
Zz Z vulnerability equivalence class
Λα α access attribute, δ transition function

Σ input alphabet, Γ tape alphabet, Λ access control matrix

General notation used throughout dissertation. When discussing specific publications and
models, there may be overlapping notation.

114

APPENDIX A

Formal Implementation Vulnerability Model

We formally define implementation vulnerabilities in chapter 5 for use in the Characteristic-

Based Vulnerability Classification Scheme. We expand this formalization in this chapter with

the Formal Implementation Vulnerability Model.

§A.1 Introduction

We present a model of security for Turing machines in this chapter. Turing machines are the

most powerful and widely used theoretical model of computation. While Turing machines may

not necessarily mimic the operation of modern systems, they are often used to model the com-

putational capability of modern systems. We provide a brief introduction to Turing machines

and how they may be used to study decidability in chapter 2.

The Formal Implementation Vulnerability Model reflects our policy-based approach for the-

oretical settings, as discussed in chapter 3. Instead of defining a security policy as a partition of

states, we define a security policy as a language of configurations. This approach better reflects

the type of scenarios we target for vulnerability analysis.

The primary purpose of this model is to provide a formal definition of implementation vul-

nerabilities and a theoretical foundation for the Characteristic-Based Vulnerability Classification

Scheme in chapter 5. However, we are also able to use this model to explore the decidability of se-

curity without making assumptions about the underlying security mechanism. We demonstrate

this by providing several decidability results in this chapter.

§A.2 Terminology

We introduced the notions of a computation trace, partial trace, and language of valid configu-

rations in chapter 2. We formally define these notions in this section, and show their decidability

115

using the theorems and definitions from Sipser [SIP97, p191–193]. We use the notation ε to de-

note the empty string. The notation w j refers to the j th string in the lexicographical ordering

of Σ∗. For example, if Σ = { 0, 1 }, the lexicographical ordering of Σ∗ is the sequence:

ε, 0, 1, 00, 01, 10, 11, . . .

§A.2.1 Computation Trace

We use the Turing machine computation trace to track all of the configurations entered by a

Turing machine on an input. If the Turing machine halts on the input, the trace is equivalent to

the computation history. However, if the machine does not halt, the trace tracks the potentially

infinite set of configurations entered by that machine. Formally:

DEFINITION A.1: Let M be a Turing machine. The trace of M on input w is

the potentially infinite sequence of configurations (h0, h1, . . . , h i , h i+1, . . .)

that M enters when computing w such that:

• h0 is the start configuration q0 w , and

• each h i yields h i+1.

DEFINITION A.2: Let M be a Turing machine. The language TRACE(M , w) is

the set of configurations:

TRACE(M , w) = { h i : h i is in the trace of M on input w }

The language TRACE(M , w) captures the unique configurations entered regardless of order.

We find that the language is recursively enumerable and undecidable. We demonstrate each of

these results individually, starting with the following theorem:

THEOREM 1.1: The language TRACE(M , w) for a Turing machine M and in-

put w is recursively enumerable.

We demonstrate that TRACE(M , w) is recursively enumerable with an enumerator Etrace

that is able to enumerate this language. We define Etrace as follows:

Etrace = “On input 〈M , w 〉, where M is a Turing machine:

1. For i = 0, 1, 2, . . .

2. Simulate input w on M for i steps.

3. Output the current configuration u qv of M .

4. If u qv is a halting configuration, halt.”

116

We demonstrate that Etrace is a valid enumerator for TRACE(M , w) as follows:

• Suppose u qv ∈ TRACE(M , w). We know Turing machine M eventually en-

ters configuration u qv when computing w . Let u qv be the i th configura-

tion entered by M on input w . The enumerator Etrace on input 〈M , w 〉 will

output u qv on the i th iteration. Therefore:

u qv ∈ TRACE(M , w) =⇒ u qv ∈ L(Etrace(M , w))

• Suppose u qv 6∈ TRACE(M , w). We know Turing machine M never en-

ters configuration u qv when computing w . The enumerator Etrace on in-

put 〈M , w 〉 only outputs configurations entered by M on input w , and will

never output configuration u qv . Therefore:

u qv 6∈ TRACE(M , w) =⇒ u qv 6∈ L(Etrace(M , w))

Therefore, TRACE(M , w) is recursively enumerable by definition. Next, we examine the

undecidability of TRACE(M , w):

THEOREM 1.2: The language TRACE(M , w) for a Turing machine M and in-

put w is undecidable.

The “Instantaneous Description Problem” is a similar to TRACE(M , w) and is known to be

undecidable [DEN96]. Denning et al. define this problem as:

ID(M , h i , h j) =
{

1 if M ever reaches configuration h j when started in h i

0 otherwise

We use a similar approach to demonstrate TRACE(M , w) is undecidable. Specifically, we show

a reduction from ATM to TRACE(M , w). Let M ′ be a computable function:

M ′ = “On input 〈M , w 〉, where M is a Turing machine:

1. Simulate M on w .

2. If M accepts w , then:

3. Clear the tape.

4. Enter accept state q ′a.

5. Else, enter reject state q ′r .”

We demonstrate that ATM ≤m TRACE(M , w) as follows:

• Suppose that 〈M , w 〉 ∈ ATM. In this case, M ′ will clear the tape and halt on

state q ′a. Since the tape is empty, the final configuration is εq ′a ε, or equiva-

117

lently the string q ′a. Therefore, the trace of M ′ computing w will include the

configuration q ′a. As a result, we claim:

〈M , w 〉 ∈ ATM =⇒ q ′a ∈ TRACE(M ′, w)

• Alternatively, suppose that 〈M , w 〉 6∈ ATM. In this case, M ′ will not enter

the accept state q ′a. As a result, the tape is not cleared and the accept state q ′a

is never entered by M ′ when computing w . Therefore:

〈M , w 〉 6∈ ATM =⇒ q ′a 6∈ TRACE(M ′, w)

Therefore, TRACE(M , w) is undecidable by mapping reducibility.

§A.2.2 Partial Trace

In situations where we need a decidable language of configurations, we define the notion of a

partial trace. A partial trace only tracks the computation of a Turing machine for a fixed number

of steps. More specifically:

DEFINITION A.3: Let M be a Turing machine. The partial trace of M on input w

is the finite sequence of configurations (h0, h1, . . . , hk) that M enters when

computing w for n steps such that:

• h0 is the start configuration q0 w ,

• each h i yields h i+1 for i < n , and

• hk is a halting configuration (such that k < n), or

• hk is the nth configuration (such that k = n)

DEFINITION A.4: Let M be a Turing machine. The language PARTIAL(M , w , n)

is the set of configurations:

PARTIAL(M , w , n) =

{ h i : h i is in the partial trace of M on input w for n steps }

Like a computation history, the partial trace is always finite. Specifically:

THEOREM 1.3: The language PARTIAL(M , w , n) for a Turing machine M , in-

put w , and positive integer n is decidable.

Any finite language is decidable, and PARTIAL(M , w , n) is finite, as:

| PARTIAL(M , w , n) | ≤ n + 1

118

§A.2.3 Valid Configurations

For a Turing machine M = (Q , Σ, Γ, δ, q0, qa, qr), we know that any valid configuration must

be in the form Γ∗Q Γ∗. However, this does not mean all of these configurations are entered when

the Turing machine M computes. For example, suppose the only transition to our accepting

state qa is from qi as follows:

δ(qi , x) = (qa, t, R)

We expect M to only enter configurations of the form Γ∗ t qa Γ∗ during computation. There-

fore, the configuration 0 qa 0 is considered an invalid configuration for M . This illustrates that

a valid configuration for one Turing machine may not be valid for another. We state that any

valid configuration with respect to a specific Turing machine M must be one that M is capable

of entering during computation. Formally:

DEFINITION A.5: Let M be a Turing machine. A valid configuration with re-

spect to M is any configuration entered by M during computation.

DEFINITION A.6: Let M be a Turing machine. The language VALID (M) is the

set of configurations:

VALID (M) = { h i : h i ∈ TRACE(M , w) for some input w }

We can restate the language VALID (M) as the union of TRACE(M , w) for all input strings w :⋃
w ∈Σ∗

TRACE(M , w)

The language TRACE(M , w) is countable, and the union of all countable sets is countable. There-

fore, we expect this language to be enumerable:

THEOREM 1.4: The language VALID (M) for a Turing machine M is recursively

enumerable.

We demonstrate that VALID (M) is recursively enumerable with an enumerator Evalid that

is able to enumerate this language. Let w j be the j th string in the lexicographical ordering of Σ∗.

We define Evalid as follows:

Evalid = “On input 〈M 〉, where M is a Turing machine:

1. For i = 1, 2, . . . , ∞:

2. For j = 1, . . . , i :

119

3. Simulate M on w j for k = i − j steps, or

until M halts on w j .

4. Output the current configuration hk of M .”

During the first iteration, Evalid will output configuration h0 for string w1. In the second

iteration, Evalid will output h1 for string w1 and configuration h0 for string w2. By dovetailing

the different inputs, we are able to output a diagonalization of VALID (M) as illustrated in Fig-

ure A.1. Halting configurations may be output multiple times by Evalid, but do not affect the

language L(Evalid).

We demonstrate that Evalid(M) enumerates the language VALID (M) as follows:

• Suppose u qv ∈ VALID (M). There exists some input w j such that u qv ∈

TRACE(M , w j). Let u qv be the k th computation in the trace of M on w j .

The enumerator Evalid will output u qv when i = k + j . Therefore, we state:

u qv ∈ VALID (M) =⇒ u qv ∈ L(Evalid(M))

• Suppose u qv 6∈ VALID (M). The Turing machine M never enters configu-

ration Ck on any output. The enumerator Evalid on input 〈M 〉 only outputs

configurations entered by M on some input w j , and will never output con-

figuration u qv . Therefore, we state:

u qv 6∈ VALID (M) =⇒ u qv 6∈ L(Evalid(M))

By definition, the language VALID (M) is recursively enumerable. Next, we examine the

undecidability of VALID (M):

THEOREM 1.5: The language VALID (M) is undecidable.

We can use the same reduction as TRACE(M , w) to demonstrate that VALID (M) is unde-

cidable. Specifically, we can reduce ATM to VALID (M) using the same computable function M ′

from section A.2.1. For example, if M accepts w , then the configuration q ′a is a valid configu-

ration of M ′. The machine M ′ never enters q ′a on any other input. As a result, q ′a is not a valid

configuration if M does not accept input w . By mapping reducibility, VALID (M) is undecidable.

§A.3 Security Problems
We reduce security problems, such as determining if or when a system is secure, to determining

if a system belongs to a specific class of languages. This allows us to apply techniques from

120

FIGURE A.1: DIAGONALIZ ATION OF VALID (M)

h1,0 h1,1 h1,2

h2,0 h2,1

h3,0

h2,2

h3,1 h3,2

w1

w2

w3
...

0 1 2 · · ·

Let h j ,k be the k th element of the trace of M on input w j . The enumerator Evalid outputs the
sequence (h1,0, h1,1, h2,0, h1,2, h2,1, h3,0, . . .) and so on.

the theory of computation to determine if our problem is solvable. For example, consider the

emptiness problem, which tries to decide whether the language of a Turing machine is empty.

We restate the emptiness problem as the language E T M :

ETM = { 〈M 〉 |M is a TM and L(M) = ∅ }

The language for a Turing machine M is empty if and only if M ∈ ETM. Since we know that the

language ETM is undecidable, we know the emptiness problem is unsolvable.

§A.3.1 System Security

Intuitively, a Turing machine is secure when it has no vulnerabilities. If there are no vulnerabil-

ities in the machine, then there are no policy violations. This is only true when the machine is

unable to enter an unauthorized configuration. Following this line of reasoning, we state a ma-

chine is secure if and only if it enters only those configurations authorized by its security policy:

DEFINITION A.7: The language SECURE T M is the language of Turing machines

and security policies such that:

SECURETM = { 〈M , P 〉 : VALID (M) ⊆ L(P) }

This reduces the problem of determining if a Turing machine is secure to determining if the

machine and its security policy belong to this language. Specifically:

DEFINITION A.8: A Turing machine M is secure with respect to a security pol-

icy P if and only if 〈M , P 〉 ∈ SECURETM.

We know from pre-established decidability results that security is undecidable [HAR76], and

expect the same to hold here:

121

THEOREM 1.6: The language SECURETM is not recursively enumerable, and

hence undecidable.

We demonstrate that SECURETM is undecidable with the mapping reduction from the lan-

guage ETM to the language SECURETM. Let M = (Q , Σ, Γ, δ, q0, qa, qr), and M ′′ be a com-

putable function defined as follows:

M ′′ = “On input 〈M 〉, where M is a Turing machine:

1. Construct a Turing machine P as follows:

2. P = ‘On input 〈M , w 〉:

a. If w ∈ Γ∗ qa Γ∗, reject w .

b. Otherwise, accept w .’

3. Output 〈M , P 〉.”

We construct P such that w ∈ L(P) only if w is not an accepting configuration. The mem-

bership test in step 2a is decidable, since regular expressions are decidable languages. There-

fore, P is a decider Turing machine and may be used as the security policy for M . We demon-

strate that ATM ≤m TRACE(M , w) as follows:

• Notice that if L(M) is empty, then it never enters an accepting configuration.

Therefore, M will never violate the security policy P . This demonstrates that:

〈M 〉 ∈ ETM =⇒ 〈M , P 〉 ∈ SECURETM

• Suppose that L(M) is not empty. The Turing machine M must be able to

enter an accepting configuration, which would violate its security policy P .

This demonstrates that:

〈M 〉 6∈ ETM =⇒ 〈M , P 〉 6∈ SECURETM

Therefore, the language SECURETM is undecidable by mapping reducibility. This language

is also not recursively enumerable:

THEOREM 1.7: The language SECURETM is not recursively enumerable.

We are able to use the same mapping reduction ETM ≤m SECURETM and computable func-

tion M ′′ to demonstrate that the language SECURETM is not recursively enumerable. Given these

results, we know that we are unable to determine if a Turing machine M is secure with respect to

a decidable security policy P .

122

§A.3.2 System Non-Security

The complement to system security is system non-security, which asks if our system is not se-

cure. Specifically, it is the language:

DEFINITION A.9: The language UNSECURE T M is the defined as:

UNSECURETM = SECURETM = { 〈M , P 〉 : VALID (M) 6⊆ L(P) }

We already know from Theorem 1.6 that security is undecidable, and hence non-security is

undecidable. However, while the language SECURETM is not recursively enumerable, the com-

plement UNSECURETM is:

THEOREM 1.8: The language UNSECURETM is recursively enumerable.

We demonstrate that UNSECURETM with a Turing machine M sec that is able to recognize

this language. Let Evalid be the enumerator from section A.2.3. We define M sec as:

M sec = “On input 〈M , P 〉, where M is a TM and P is a decider:

1. Enumerate VALID (M) using Evalid.

2. If Evalid outputs a configuration u qv 6∈ L(P), reject.”

Since P is a decider, we know that step 2 is decidable. If M does eventually enter an unau-

thorized configuration, the Turing machine M sec will reject. This demonstrates that:

〈M , P 〉 ∈ L(M sec) =⇒ 〈M , P 〉 ∈ UNSECURETM

Therefore, M sec recognizes the language UNSECURETM. By definition, UNSECURETM is recur-

sively enumerable.

The problem of system security asks the unsolvable question, “Is my system secure with re-

spect to my policy?” The problem of computer non-security asks the recursively enumerable

question, “Is my system non-secure with respect to my policy?” By refining our question, we in-

crease our ability to find an answer. We take this a step further and explore the question, “When

is my system non-secure?” We capture this with real-time security in the next section.

§A.3.3 Real-Time Security

We may be unable to determine if a system is secure, but we are able to determine if our systems

are non-secure. However, in practice, the answer to this question is a forgone conclusion. It is

safe assumption that any modern general purpose system is non-secure.

123

In light of this, it is more useful to determine when a system is non-secure. The answer to this

question provides actionable information on how to better protect our systems. Our notion of

real-time security is one step towards providing this answer. Specifically, we define the language:

DEFINITION A.10: The language RTSECURE T M is the set:

RTSECURETM = { 〈M , P, w , i 〉 : PARTIAL(M , w , i) ⊆ L(P) }

Essentially, a machine is real-time secure if the Turing machine is secure up to the current

computation step. More formally:

DEFINITION A.11: Let i be the current computation step of a Turing machine M

on input w . We say M is real-time secure with respect to a security policy P if

and only if:

〈M , P, w , i 〉 ∈ RTSECURETM

As we know from Theorem 1.3, the language PARTIAL(M , w , i) is decidable. Therefore, we

expect the language RTSECURETM to be decidable as well:

THEOREM 1.9: The language RTSECURETM is decidable.

We know that by definition P is a decider Turing machine, and that L(P) is decidable. For

every configuration u qv ∈ PARTIAL(M , w , i) we are able to decide if u qv ∈ L(P). We also

know that PARTIAL() is finite from Theorem 1.3, and therefore we only have a finite number of

these membership tests. Therefore, RTSECURETM decidable.

As a result, we are able to detect exactly when a system is non-secure. We are able to find the

earliest computation step that causes a Turing machine to violate its security policy, and provide

the partial trace of the Turing machine up to that point. We use this information to motivate our

approach to implementation vulnerability analysis in chapter 6.

§A.4 Discussion

In practice, we do not have infinite time and computers do not have infinite memory. Even those

problems that are solvable by Turing machines may require too much space or time to solve in

practice. Furthermore, modern systems and security policies are too complex to formally define

as Turing machines.

124

FIGURE A.2: DECIDABILITY RESULTS

Recursively Co-Recursively
Language Enumerable Enumerable Decidable

VALID (M) Yes No No
TRACE(M , w) Yes No No
PARTIAL(M , w , n) Yes Yes Yes

SECURETM No Yes No
UNSECURETM Yes No No
RTSECURETM Yes Yes Yes

Decidability results for each language. For example, SECURETM is not recursively enumerable,
co-recursively enumerable, and undecidable.

However, theoretical work does place an upper bound on what is achievable in computer

security and suggests where to focus research. Our initial theoretical results demonstrate that

some questions are more practical to explore than others.

For example, theoretical work often tackles the question, “Is my system secure?” Depending

on the underlying system and environment, this may be the appropriate question to ask. How-

ever, even in cases where this question may be decidable, it is not necessarily feasible to solve in

practice. And, for most generic-purpose modern computers, we already know the answer—these

systems are not secure.

This leads to a binary notion of security. Either a system is a member of SECURETM or it is

not. A single vulnerability can compromise an entire system. As long as a single vulnerability

exists, our systems are not secure. However, this approach hides the complexity of security. As

Bishop states, “evaluating security in this fashion evades the purpose of providing it” [BIS03B].

Instead, asking the question, “When is my system not secure?” better matches how security

is addressed in practice. We identify the issues that weaken our system security, and attempt to

address those weaknesses with prevention and detection mechanisms. This provides actionable

information that allows us to increase our confidence in the security of these systems. Instead of

a binary notion of security, we treat security as an upper bound and strive to get as close to that

bound as possible.

The notion of real-time security reflects this shift in thinking. With real-time security, we are

trying to understand when our systems are not secure. We use this intuition when performing

implementation vulnerability analysis in chapter 6.

125

FIGURE A.3: TERMINOLOGY AND NOTATION

Name Notation Reference

Turing Machine M = (Q , Σ, Γ, δ, q0, qa, qr) §2.4.3 (p25)
Computation History H = (h0, h1, . . . , hk) §2.4.6 (p28)

Policy Condition { u qv : u qv is authorized } 3.12 (p41)
State Condition and u ◦ v ∈ Σ∗ 3.15 (p42)
Tape Condition and q ∈ Q 3.16 (p43)

Trace TRACE(M , w) for input w A.2 (p115)
Partial Trace PARTIAL(M , w , n) for input w and n steps A.4 (p117)
Valid Configurations VALID (M) for Turing machine M A.6 (p118)

Security Policy L(P)where P is a decider TM 3.14 (p42)

Security Problems §A.3 (p119)
Security SECURETM = { 〈M , P 〉 : VALID (M) ⊆ L(P) } A.7 (p120)
Non-Security UNSECURETM = SECURETM A.9 (p122)
Real-Time RTSECURETM = A.10 (p123)

{ 〈M , P, w , i 〉 : PARTIAL(M , w , i) ⊆ L(P) }

Vulnerability V = (T, U) (implementation-level) 5.3 (p69)
Preconditions T ⊆ PARTIAL(M , P, w , i − 1) 5.2 (p69)
Policy Violations U ⊆ (VALID (M) 	 L(P)) 5.1 (p69)

Summary of the terminology and notation used throughout chapter A. Languages and security
problems are typeset in capital italics with the base system model in the subscript. For example,
ATM is the acceptance problem for Turing machines (TM).

§A.5 Summary

The Formal Implementation Vulnerability Model provides the theoretical foundation necessary

for the Characteristic-Based Vulnerability Classification Scheme, which is an integral part of our

vulnerability analysis framework. The Formal Implementation Vulnerability Model defines se-

curity policy in chapter 3 as a language of configurations, and implementation vulnerabilities

in chapter 5 as a combination of preconditions and policy violations. In this chapter, we utilize

this model to define real-time security for a Turing machine, and demonstrate various decidabil-

ity results. We use these decidability results to motivate a shift from determining if a system is

secure to detecting when a system is non-secure in chapter 6.

126

APPENDIX B

Discussion

We expand our discussion on various topics in this chapter. Specifically, we illustrate how to

approximate the configured oracle introduced in chapter 4 for an ACM-based security mecha-

nism, motivate our choice in chapter 5 for formalizing the basic characteristic set, and detail the

original and revised buffer overflow characteristics used in chapter 5.

§B.1 Approximating Access Control Matrix Models

We introduced the Access Control Matrix (ACM) Model [LAM71, GRA71] in chapter 2. An access

control matrix is often used to capture the access control policy of security mechanisms. While

our framework does not use an access control matrix, we are able to capture the policy repre-

sented by one with the configured oracle.

Consider the protection system model of Graham and Denning and the eight rules they

present [GRA71]. We use the same notation as the original paper, except that we use the no-

tation Λ for the the access control matrix. Let S be the set of subjects in that matrix, and X be

the set of objects in the matrix. We use s ∈ S to denote a single subject and x ∈ X to denote an

object defined in the access control matrix. We use α to denote an access attribute and α∗ to

denote an access attribute with the copy flag set, which indicates a subject may copy or transfer

the attribute to another user. We demonstrate how to form the global policy event space and

approximate the configured oracle for this ACM-based protection system model next.

§B.1.1 Global Policy Event Space

We must approximate the global policy event space before we are able to approximate the config-

ured oracle. We derive the universal sets of subjects and objects directly from the access control

127

matrix, and derive the universal set of actions from access attributes and the rules that govern

how the access control matrix may be manipulated.

We assume the access control matrix initially includes the universal subject. The universal

subject is a subject without an owner and has every possible access attribute to every object,

similar to the notion of an administrator or root user. Therefore, the initial set S will contain at

least one subject. We derive the universal subject set directly from this set:

S = S

Subjects are also considered objects by the access control matrix. For example, a process

may both perform an action, or be the target of an action. The access control matrix itself is

also considered an object. This allows us to capture actions which operate on the access control

matrix by adding new rows, columns, or modifying entries. Given this, we initialize the universal

set of objects as follows:

O = S ∪ X ∪ {Λ }

We infer actions from the access attributes present in the access control matrix Λ, and from

the set of eight rules governing how the access control matrix is modified. The access attributes

indicate the access privileges for a particular subject/object pair. For example, the access at-

tribute w ∈ Λ[s , x]may indicate that subject s is authorized to perform the write action on the

object x . We state that for every unique access attribute α, we add the associated set of actions

to our universal action set A.

The exact set of access attributes depends on the specific protection system in question.

However, there is a minimal set of actions and attributes inferable from the set of rules. These

rules control how the access control matrix may be modified. For each rule, we add the associ-

ated command to our universal action set A. More specifically, we add the following actions for

modifying access attributes in the matrix:

• read(s , x): read the set of access attributes for subject s and object x from

the matrix Λ[s , x] (inferred from rule R4)

• grant(α, s , x): grant the access attribute α to subject s and object x such

that α ∈ Λ[s , x] (inferred from rule R2)

• transfer(α, s , x): transfer the access attribute α to subject s and object x

such that α ∈ Λ[s , x] (inferred from rule R1)

128

• delete(α, s , x): delete the attribute α (or α∗ if present) from subject s and

object x such that α 6∈ Λ[s , x] and α∗ 6∈ Λ[s , x] (inferred from rule R3)

The grant and transfer actions perform as expected when dealing with access attributes

with the copy flag. We also include actions that allow for the structure of the matrix to be modi-

fied. We use the following actions to remove elements from the matrix:

• destroy_obj(x): deletes the column for object x in Λ (inferred from rule R6)

• destroy_sbj(s): deletes the row for subject s in Λ and performs the ac-

tion destroy_obj(s) to delete object s (inferred from rule R8)

To add new subjects and objects, we track which subject is performing the action such that

we may update the owner attribute in access control matrix. Specifically, we add:

• create_obj(s , x): creates a column in Λ for object x and adds the owner

attribute such that owner ∈ Λ[s , x] (inferred from rule R5)

• create_sbj(s , ś): creates a new row in Λ for subject ś , performs the action

create_obj(s , ś) to create a new column in Λ for object ś , and adds the

control access attribute such that control ∈ Λ[ś , ś] (inferred from rule R7)

All of these actions are added to our universal action set A.

§B.1.2 Configured Oracle

We are now able to infer the configured oracle for this protection system from the set of rules.

These rules define when specific actions are authorized based on the contents of the access con-

trol matrix. All of these actions operate on the access control matrix itself.

Rule R1 allows the transfer of access attributes if the copy flag of that attribute is set. This is

a modification of the access control matrix itself, and thus Λ is our object. The configured oracle

captures this behavior with the following:

Pco(s , Λ, transfer(α, ś , x), α∗ ∈ Λ[s , x]) = yes

Pco(s , Λ, transfer(α, ś , x), α∗ 6∈ Λ[s , x]) = no

This states that the transfer action is allowed under the Boolean condition that the ac-

cess attribute α∗ is in the access control matrix. For example, subject yasmin may transfer the

read attribute for object log.txt to xander if yasmin has read∗ privileges for log.txt. If yasmin

transfers the read∗ attribute to xander, then xander may transfer the privilege to other subjects.

129

The Rule R2 allows a subject to grant access attributes, with the copy flag if desired, to others

for any object it holds the owner attribute. Specifically:

Pco(s , Λ, grant(α, ś , x), owner ∈ Λ[s , x]) = yes

Pco(s , Λ, grant(α, ś , x), owner 6∈ Λ[s , x]) = no

We handle transferring or granting access attributes with the copy flag in the same way:

Pco(s , Λ, grant(α∗, ś , x), owner ∈ Λ[s , x]) = yes

Pco(s , Λ, grant(α∗, ś , x), owner 6∈ Λ[s , x]) = no

Rule R3 allows the deletion of attributes based on the owner and control attributes.† We

capture this with the statements:

Pco(s , Λ, delete(α, ś , x), control ∈ Λ[s , ś]) = yes

Pco(s , Λ, delete(α, ś , x), owner ∈ Λ[s , x]) = yes

Pco(s , Λ, delete(α, ś , x), control 6∈ Λ[s , ś] ∧ owner 6∈ Λ[s , x]) = no

If yasmin has the owner attribute for log.txt, then yasmin may grant or delete the read

attribute from xander. Similarly, if root has the control attribute for the subject yasmin, then

the user root may grant or delete attributes from yasmin. We use the logical and operator ∧ to

determine when the delete option should be disallowed, but other logically equivalent methods

for defining the configured oracle for this rule exist. We are able to capture the remaining rules

using a similar approach.

§B.1.3 Other Access Attributes

The configured policy thus far captures how the access control matrix may be modified. How-

ever, the protection system is likely to have other access attributes which indicate when an ac-

tion should be allowed. In general, if an access control matrix Λ has an attribute α that indicates

action a is authorized for some subject s and object o ∈ O, we are able to capture this with:

Pco(s , o, a , α ∈ Λ[s , o]) = yes

Pco(s , o, a , α 6∈ Λ[s , o]) = no

This allows us to illustrate the gap between the feasible and configured policies. For exam-

ple, suppose we authorize yasmin to read the log.txt file. Therefore:

Pfe(yasmin, log.txt, read, true) = yes

† The control attribute only applies to subjects.

130

At the configured level, the policy depends on the access control matrix:

Pco(yasmin, log.txt, read, r ∈ Λ[yasmin, log.txt]) = yes

If the access control matrix is properly populated such that r ∈ Λ[yasmin, log.txt], then the

instantiated policy matches our feasible policy. However, suppose that the access control matrix

becomes corrupted (either accidentally or maliciously), and as a result of this corruption the

attribute r 6∈ Λ[yasmin, log.txt]. The instantiated policy becomes:

Pin(yasmin, log.txt, read, true) = no

Notice that this does not violate the configured policy. Since the attribute r is no longer in

the access matrix for yasmin, she should not have the ability to read the file log.txt. However,

this does not match the policy we intended to enact. The policy hierarchy is able to capture this

as a problem with the configuration, and not necessarily with the implementation.

§B.2 Basic Set Formalization
Bishop introduces the notion of a basic characteristic set as a “unique, sound characteristic set of

minimal size” [BIS99]. We formalize this notion in section 5.3.5 using concepts from the Formal

Implementation Vulnerability Model. However, there are multiple possible formalizations of a

basic characteristic set, each with different advantages and disadvantages. We expand on these

different formalizations in this chapter. We focus on characteristic sets in our discussion, but the

same holds true for symptom sets.

§B.2.1 Minimal Set Cover

One possible formalization is to define a basic characteristic set as a minimal set cover of pre-

conditions. We introduce the notion of a set cover in section 2.4.7. This results in the following

definition of a basic set:

DEFINITION B.1: Given a set of preconditions T ⊆ TM for system M ∈ M, the

basic characteristic set is the set XT ⊆ X such that XT is a minimal set cover

of T for system M ; i.e. the following holds:⋃
X i ∈ XT

X (M , X i) = T

Using a minimal set cover to define a basic characteristic set, we perfectly capture the pre-

condition set. For example, suppose we have a set of preconditions T defined for system M , the

131

associated basic characteristic set XT , and the set of preconditions T ′ that are mapped by the

characteristics in XT for system M . We may calculate T ′ as follows:

T ′ =
⋃

X i ∈ XT

X (M , X i)

Using Definition B.1, the sets T and T ′ are exactly equal:⋃
X i ∈ XT

X (M , X i) = T

Therefore, whether we take a top-down or bottom-up approach to classification, we are dealing

with the same set of underlying preconditions.

However, in practice, this approach has disadvantages. There are several NP-complete prob-

lems when it comes to dealing with subsets, including the set covering problem (including the

exact cover problem) and the set packing problem [KAR72]. We introduce the set covering prob-

lem in chapter 2, which attempts to find a minimal set cover. The set packing problem attempts

to find the largest pairwise disjoint cover of a set of sets. Both of these problems are related to

the process of finding a basic characteristic or symptom set—a sound basic characteristic set is

a pairwise disjoint minimal set cover.

We must avoid having to solve any NP-complete problems if we want our abstractions to be

used in practice. We may turn to approximation algorithms in practice if necessary, but we be-

lieve that the soundness property of our universal sets allows us to avoid solving an NP-complete

problem altogether. Specifically, since the universal sets are sound, each element may appear at

most once in any subset. We may attempt to find a set cover by examining the preconditions

mapped by every characteristic in our universal set. We claim that any set cover we find will be

both pairwise disjoint and minimal, as there is only one unique set cover possible.

This highlights the importance of having a sound universal characteristic set. However, a

sound universal characteristic set reduces the likelihood that a set cover exists for our set of pre-

conditions. Consider the following example:

X= {Xa , Xd , Xe , Xg } X (M , Xa) = { a , b , c }

T= { (M , TM) } X (M , Xd) = { d }

TM = { a , b , c , d , e , f , g , h } X (M , Xe) = { e , f }

T = { c , d , e , f } X (M , X g) = { g , h }

132

The universal characteristic setX is both sound and complete, and has fewer characteristics

than preconditions in the universal precondition set T. However, we are unable to form a min-

imal set cover for T in this example. If we use the set { Xd , Xe }, then precondition c remains

uncovered. If we include Xa in the set, we also include preconditions a and b which are not in

set T . Either way, there is no set cover of characteristics for the preconditions T . To find a set

cover, we must modify the universal characteristic set by splitting Xa into two characteristics—a

process that may be time consuming in practice.

It may be too difficult in practice to develop a universal characteristic set that is both sound

and able to cover the basic characteristic sets for every vulnerability being analyzed. We may

loosen the restriction placed by using a minimal set cover for the basic characteristic set, but this

loosens the relationship between preconditions and characteristics. We discuss the advantages

and disadvantages of this approach next.

§B.2.2 Minimal Superset Cover

In the earlier example, we are unable to perfectly cover the set of preconditions T . If we do not

modify the universal characteristic set, we have two options:

• Cover a maximal subset of T . For example, we are able to perfectly cover the

subset of preconditions { d , e , f }with the set cover { Xd , Xe }. In this case,

we do not include precondition c ∈ T .

• Cover a minimal superset of T . For example, we are able to perfectly cover

the superset { a , b , c , d , e , f } with the set cover { Xa , Xd , Xe }. In this

case, we include preconditions a , b 6∈ T .

Both approaches have downsides—but we choose the second approach due to practical

considerations. Suppose we cover a minimal superset of T . Then the characteristic Xa is in-

cluded in the basic characteristic set. If we choose to disable the characteristic Xa in the system,

we still disable the associated vulnerability. However, we remove more preconditions than nec-

essary. Alternatively, assume we choose the first approach. The characteristic Xa is not included

in the basic characteristic set, removing a possible defense vector. We may also miss similarities

between vulnerabilities that would have otherwise included characteristic Xa .

133

We capture the second approach by including any characteristic that intersects with our

precondition set:

DEFINITION B.2: Given a set of preconditions T ⊆ TM for system M ∈ M, the

basic characteristic set is the set XT ⊆ X such that:

XT = { X i ∈ X : X (M , X i) ∩ T 6= ∅ }

This formalization is more practical, as it requires less modification to the universal charac-

teristic set. We examine each characteristic in our universal characteristic set, and test whether

the intersection is empty. We avoid any NP-complete problems as before, and do not need to

refine the universal characteristic set. There will always be a basic characteristic set given our

universal characteristic set is sound and complete.

However, we no longer perfectly capture the underlying precondition set. For example, con-

sider the precondition set:

T = { c , d , e , f }

Using Definition B.2, the set of preconditions covered by XT for system M are:

T ′ = { a , b , c , d , e , f }

This approach captures more preconditions than necessary in the basic characteristic set. There-

fore, the set of underlying preconditions differs whether we take a top-down or bottom-up ap-

proach to classification. We believe the advantages outweigh the disadvantages in practice, es-

pecially since we rarely explicitly define preconditions in practice.

§B.3 Buffer Overflow Characteristics

We introduced the initial work by Bishop et al. on developing buffer overflow characteristics in

chapter 2 [BIS10], and introduced revised buffer overflow characteristics in chapter 5. We sum-

marize the original characteristics from this work here, and map them to our revised character-

istics. We assume these characteristics were developed for the representative system set:

M = {M : M runs a Unix-like operating system }

§B.3.1 Original Characteristics

The original buffer overflow work defines eighteen characteristics for four types of buffer over-

flow vulnerabilities: direct executable, indirect executable, direct data, and indirect data. A di-

134

rect executable buffer overflow vulnerability modifies the function pointer on the stack, and are

captured by the following five characteristics:

• P1: The length of the uploaded string is longer than that of the buffer.

• P2: The string may contain instructions and/or addresses.

• P3: Input can modify the stored return address.

• P4: The program can jump to memory in the stack.

• P5: The program can execute instructions stored in the stack.

An indirect executable buffer overflow vulnerability occurs when a function pointer vari-

able on the heap is modified. We capture these vulnerabilities with:

• P6: The length of the uploaded string is longer than that of the buffer.

• P7: The string may contain addresses.

• P8: Input can modify the value in the function pointer.

• P9: The program can jump to the heap.

• P10: The program can execute instructions in the heap.

A direct data buffer overflow vulnerability occurs when the program flow is altered by mod-

ifying the value of that variable. The following characteristics capture this:

• P11: The length of the uploaded string is longer than that of the buffer.

• P12: The string may contain data of the same type of the variable.

• P13: The value stored in the variable may be modified.

• P14: The variable determines which execution path is taken at a future point

in the execution of the process.

Finally, a indirect data buffer overflow vulnerability occurs when the address or pointer to a

control flow variable is modified, altering the program flow. Five characteristics are defined for

this type of vulnerability:

• P15: The length of the uploaded string is longer than that of the buffer.

• P16: The string may contain addresses.

• P17: The address stored in the pointer variable can be modified.

• P18: The value pointed to by the pointer variable determines which execu-

tion path is taken at a future point in the execution of the process.

135

Even though the characteristics are defined informally, each of these characteristics are

based on aspects of the code—and thus we are reasonably sure that they may be translated into

implementation preconditions. For example, let n be the size of the destination buffer. The

characteristic P1 may be represented by the precondition:

P1 = { u qv : q ∈ Q and | u ◦ v | ≥ n }

We are able to refine these characteristics to increase our chances for consistent and repeatable

vulnerability classification results. We present one such refinement next.

§B.3.2 Revised Characteristics

Many of the original characteristics share similarities. For example, P1, P6, P11, and P15 all cap-

ture the overflowing of the buffer, but do so for different types of buffer overflow vulnerabilities.

We modify the original characteristics of the buffer overflow work to reflect these similarities.

We first observe that P1, P6, P11, and P15 are identical characteristics. We collapse these

into a single new characteristic x:buff as follows:

x:buff: len(input) > len(buffer)

Informally, this captures the original characteristic “the length of a (possibly transformed) up-

loaded string is longer than that of the destination buffer.” We use input to refer to the uploaded

string (post any transformation), and buffer to refer to the destination buffer. We assume the

len() function returns the length of a string or the buffer. We chose to describe the characteristic

in pseudo-code, but a grammar may also be created similar to that of Whalen et al. [WHA05].

Each type of buffer overflow vulnerability also contains a characteristic based on the type of

information that may be included in the uploaded string. We define a function may_contain()

to return the data types allowed for a particular string.

x:addr: may_contain(input, addr) ≡ true

x:inst: may_contain(input, inst) ≡ true

Informally, the characteristic x:addr captures “the uploaded (and possibly transformed) string

may contain addresses,” as described in P7 and P16. The characteristic x:inst captures “the

uploaded (and possibly transformed) string may contain instructions,” which when combined

with x:addr captures P2.

136

Characteristic P16 is described as “the uploaded (and possibly transformed) string may con-

tain data of the type of the particular variable.” To capture this, we define the variable flowvar to

represent the “particular variable” being referenced that affects the program flow, and the func-

tion type() to return the type of that variable. Using these, we describe P16 with the following

new characteristic:

x:type: may_contain(input, type(flowvar)) ≡ true

We also observe that each type of buffer overflow vulnerability involves some sort of modifi-

cation. Let the function may_modify() test whether this modification may occur. Let retnptr be

the return address referenced in P3, funcptr be the function pointer referenced in P8, flowvar

be the variable referenced in P13, and flowptr be the pointer for the program flow variable ref-

erenced in P17. This results in the following new characteristics:

x:rval: may_modify(retnptr) ≡ true

x:fptr: may_modify(funcptr) ≡ true

x:vvar: may_modify(flowvar) ≡ true

x:vptr: may_modify(flowptr) ≡ true

Executable buffer overflow vulnerabilities also have other similarities. For example, both P4

and P9 involve jumping into either a stack or heap, and characteristics P5 and P10 involve exe-

cuting instructions in the stack or heap. We capture these four characteristics with the following:

x:jmps: can_jump(stack) ≡ true

x:jmph: can_jump(heap) ≡ true

x:exes: can_exec(stack) ≡ true

x:exeh: can_exec(heap) ≡ true

Finally, data buffer overflow vulnerabilities both require a variable that affects which execu-

tion path is taken at a future point of execution. Specifically, P14 is described as “the particular

variable determines which execution path is to be taken at a future point in the execution of the

process,” and P18 is described as “the value pointed to by the particular pointer variable deter-

mines which execution path is to be taken at a future point in the execution of the process.” Let

flowvar be the variable that affects the program flow, and let flowptr be a pointer to flowvar.

We may capture both P14 and P18 with the characteristic:

x:path: affects_flow(flowvar) ≡ true

137

FIGURE B.1: BUFFER OVERFLOW CHARACTERISTICS

Old New Description

P1 x:buff The length of the (possibly transformed) uploaded string is
longer than that of the destination buffer.

P2 x:addr,
x:inst

The uploaded (and possibly transformed) string may contain in-
structions and/or addresses.

P3 x:rval Input can change the stored return address without the change
being countered.

P4 x:jmps The program can jump to memory in the stack.

P5 x:exes The program can execute instructions stored in the stack.

P6 x:buff The length of the (possibly transformed) uploaded string is
longer than that of the destination buffer.

P7 x:addr The uploaded (and possibly transformed) string may contain
addresses.

P8 x:fptr Input can change the value in the function pointer variable with-
out being countered.

P9 x:jmph The program can jump to the heap.

P10 x:exeh The program can execute instructions in the heap.

P11 x:buff The length of the (possibly transformed) uploaded string is
longer than that of the destination buffer.

P12 x:type The uploaded (and possibly transformed) string may contain
data of the type of the particular variable.

P13 x:vval The value stored in the particular variable can be changed with-
out being countered.

P14 x:path The particular variable determines which execution path is to be
taken at a future point in the execution of the process.

P15 x:buff The length of the uploaded string is longer than that of the des-
tination buffer.

P16 x:addr The uploaded (and possibly transformed) string may contain
addresses.

P17 x:vptr The address stored in the particular pointer variable can be
changed without being countered.

P18 x:path The value pointed to by the particular pointer variable deter-
mines which execution path is to be taken at a future point in
the execution of the process.

The original 18 buffer overflow characteristics defined by Bishop et al. [BIS10], and which char-
acteristics they map to in the Characteristic-Based Vulnerability Classification Scheme.

138

Bibliography

ABB76 Abbott, Robert P., Janet S. Chin, James. E. Donnelley, William L. Konigsford, Shigeru
Tokubo, and Douglas A. Webb. “Security Analysis and Enhancements of Computer Op-
erating Systems.” Final Report NBSIR 76-1041, Institute for Computer Sciences and
Technology, National Bureau of Standards, April 1976.

ALM06 Alm, Christopher and Michael Drouineaud. “Analysis of Existing Policy Languages.”
Deliverable AP 2.3, ORKA Consortium, June 2006.

AND96 Anderson, Ross J. “A Security Policy Model for Clinical Information Systems.” In Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy, May 1996, pages 30–43.

AND04 Andrews, Mike and James A. Whittaker. “Computer Security.” IEEE Security & Privacy,
volume 2 (5), September/October 2004: pages 68–71.

ASL95 Aslam, Taimur. A Taxonomy of Security Faults in the UNIX Operating System. Master’s
Thesis, Purdue University, August 1995.

AVE07 Aven, Terje. “A Unified Framework for Risk and Vulnerability Analysis Covering Both
Safety and Security.” Reliability Engineering & System Safety, volume 92 (6), June 2007:
pages 745–754.

BAR92 Barnes, Greg, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. “A Sublinear
Space, Polynomial Time Algorithm for Directed s -t Connectivity.” In Proceedings of
the Seventh Annual Structure in Complexity Theory Conference. IEEE Computer Society
Press, June 1992, pages 27–33.

BEZ09 Beznosov, Konstantin, Philip Inglesant, Jorge Lobo, Rob Reeder, and Mary Ellen Zurko.
“Usability Meets Access Control: Challenges and Research Opportunities.” In Proceed-
ings of the 14th ACM Symposium on Access Control Models and Technologies (SACMAT),
June 2009, pages 73–74. (Panel Session).

BIS78 Bisbey, Richard and Dennis Hollingworth. “Protection Analysis: Final Report.” Final
Report ISI/SR-78-13, Information Sciences Institute, University of Southern California,
May 1978.

BIS84 Biskup, Joachim. “Some Variants of the Take-Grant Protection Model.” Information
Processing Letters, volume 19 (3), October 1984: pages 151–156.

BIS95 Bishop, Matt. “Theft of Information in the Take-Grant Protection Model.” Journal of
Computer Security, volume 3 (4), 1994/1995: pages 283–308.

BIS96 Bishop, Matt and David Bailey. “A Critical Analysis of Vulnerability Taxonomies.” Tech-
nical Report CSE-96-11, Department of Computer Science, University of California,
Davis, September 1996.

139

BIS99 Bishop, Matt. “Vulnerability Analysis: An Extended Abstract.” In Proceedings of the
International Symposium on Recent Advances in Intrusion Detection (RAID), September
1999, pages 125–136.

BIS03A Bishop, Matt. Computer Security: Art and Science. Addison-Wesley, 2003.

BIS03B Bishop, Matt. “What Is Computer Security?” IEEE Security and Privacy, volume 1 (1),
January/February 2003: pages 67–69.

BIS06 Bishop, Matt and Sean Peisert. “Your Security Policy is What??” Technical Report CSE-
2006-20, Department of Computer Science, University of California, Davis, 2006.

BIS08 Bishop, Matt, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates. “We Have Met
the Enemy and He is Us.” In Proceedings of the 2008 New Security Paradigms Workshop
(NSPW), September 2008, pages 1–12.

BIS09A Bishop, Matt. “Reflections on UNIX Security.” In Proceedings of the 25th Annual Com-
puter Security Applications Conference (ACSAC), December 2009.

BIS09B Bishop, Matt, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates. “Case Studies
of an Insider Framework.” In Proceedings of the 42nd Hawaii International Conference
on System Sciences (HICSS), January 2009, pages 1–10.

BIS10 Bishop, Matt, Damien Howard, Sophie Engle, and Sean Whalen. “A Taxonomy of Buffer
Overflow Preconditions.” Technical Report CSE-2010-01, Department of Computer Sci-
ence, University of California, Davis, 2010.

BISAR Bishop, Matt, Sophie Engle, Deborah A. Frincke, Carrie Gates, Frank L. Greitzer, Sean
Peisert, and Sean Whalen. “A Risk Management Approach to the “Insider Threat”.” In
Insider Threats in Cybersecurity—And Beyond. Springer Verlag, Berlin, 2010 (to appear).

BLA07 Blaze, Matt, Arel Cordero, Sophie Engle, Chris Karlof, Naveen Sastry, Micah Sherr, Till
Stegers, and Ka-Ping Yee. “Source Code Review of the Sequoia Voting System.” Final
report, Office of the California Secretary of State, June 2007. Top-to-Bottom Review of
California Voting Systems.

BOY00 Boyle, Robert. The Unsuccessful Experiment in Certain Physiological Essays, volume 2 of
The Works of Robert Boyle. Edited by Michael Hunter and Edward B. Davis. Pickering &
Chatto, London, 1999–2000.

CAP10 The MITRE Corporation, http://capec.mitre.org/. Common Attack Pattern Enumera-
tion and Classification (CAPEC), January 2010. (Last Accessed).

CAR06 Carlson, Adam. The Unifying Policy Hierarchy Model. Master’s Thesis, Department of
Computer Science, University of California, Davis, June 2006.

CHE04 Chen, Hao, Drew Dean, and David Wagner. “Model Checking One Million Lines of C
Code.” In Proceedings of the 11th Annual Network and Distributed Systems Security Sym-
posium (NDSS), February 2004, pages 171–185.

CHR07 Christey, Steve and Robert A. Martin. “Vulnerability Type Distributions in CVE.” Doc-
ument Version 1.1, Common Weakness Enumeration (CWE), http://cwe.mitre.org/
documents/vuln-trends/index.html, May 22 2007. (Last Modified).

http://capec.mitre.org/
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html

140

CHU01 Chung, Christina Yip, Michael Gertz, and Karl Levitt. “Discovery of Multi-Level Security
Policies.” In Proceedings of the IFIP TC11/WG11.3 Fourteenth Annual Working Confer-
ence on Database Security. ACM Special Interest Group on Management of Data (SIG-
MOD), 2001, pages 173–184.

COH97A Cohen, Fred. “Information System Attacks: A Preliminary Classification Scheme.” Com-
puters & Security, volume 16 (1), 1997: pages 29–46.

COH97B Cohen, Fred. “Information System Defences: A Preliminary Classification Scheme.”
Computers & Security, volume 16 (2), 1997: pages 94–114.

COR03 Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2nd edition, 2003.

COR07 Core Security Technologies, http://www.coresecurity.com/?action=item&id=1703.
OpenBSD’s IPv6 mbufs Remote Kernel Buffer Overflow, March 2007. (Posted).

COW98 Cowan, Crispin, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. “StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-Overflow Attacks.” In Proceedings of the 7th
USENIX Security Symposium. USENIX Association, Berkeley, California, 1998, page 5.

CVE09 The MITRE Corporation, http://cve.mitre.org/about/terminology.html. Common Vul-
nerabilities and Exposures (CVE), November 2009. (Last Accessed).

CWE09 The MITRE Corporation, http://cwe.mitre.org/about/. Common Weakness Enumera-
tion (CWE), November 2009. (Last Accessed).

DEM95 Demillo, Richard A. and Aditya P. Mathur. “A Grammar Based Fault Classification
Scheme and its Application to the Classification of the Errors of TEX.” Technical Report
SERC-TR-165-P, Software Engineering Research Center, September 1995.

DEN96 Denning, Peter J. and Jack B. Dennis. “A Simple Proof of the Correspondence Theorem.”
Memo 29, Computation Structures Group, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 196?

DEN99 Denning, Dorothy E. “The Limits of Formal Security Models.” National Computer Sys-
tems Security Award Acceptance Speech, October 18 1999.

DOV98 “Database of Vulnerabilities, Exploits, and Signatures (DOVES).” http://seclab.cs.
ucdavis.edu/projects/vulnerabilities, November 1998. (Last Modified).

D’S08 D’Souza, Deepak, Raveendra Holla, Janardhan Kulkarni, Raghavendra K. Ramesh, and
Barbara Sprick. On the Decidability of Model-Checking Information Flow Properties in
Information Systems Security, volume 5352/2008 of Lecture Notes in Computer Science.
Springer, Berlin, December 2008, pages 26–40.

DUN02 Dunlap, George W., Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
“ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay.”
ACM SIGOPS Operating Systems Review, volume 36 (SI), Winter 2002: pages 211–224.

END75 Endres, Albert. “An Analysis of Errors and Their Causes in System Programs.” ACM
SIGPLAN Notices, volume 10 (6), June 1975: pages 327–336.

http://www.coresecurity.com/?action=item&id=1703
http://cve.mitre.org/about/terminology.html
http://cwe.mitre.org/about/
http://seclab.cs.ucdavis.edu/projects/vulnerabilities
http://seclab.cs.ucdavis.edu/projects/vulnerabilities

141

ENG06A Engle, Sophie, Sean Whalen, Damien Howard, and Matt Bishop. “Tree Approach to
Vulnerability Classification.” Technical Report CSE-2006-10, Department of Computer
Science, University of California, Davis, 2006.

ENG06B Engle, Sophie, Sean Whalen, Damien Howard, Adam Carlson, Elliot Proebstel, and Matt
Bishop. “A Practical Formalism for Vulnerability Comparison.” Technical Report CSE-
2006-11, Department of Computer Science, University of California, Davis, 2006.

ENG08A Engle, Sophie and Matt Bishop. “A Model for Vulnerability Analysis and Classification.”
Technical Report CSE-2008-05, Department of Computer Science, University of Califor-
nia, Davis, 2008.

ENG08B Engle, Sophie, Sean Whalen, and Matt Bishop. “Modeling Computer Insecurity.” Tech-
nical Report CSE-2008-14, Department of Computer Science, University of California,
Davis, 2008.

FEY74 Feynman, Richard P. “Cargo Cult Science.” Engineering and Science, volume 37 (7), June
1974: pages 10–13.

FIT04 Fithen, William L., Shawn V. Hernan, Paul F. O’Rourke, and David A. Shinberg. “Formal
Modeling of Vulnerability.” Bell Labs Technical Journal, volume 8 (4), February 2004:
pages 173–186.

GOG82 Goguen, Joseph A. and José Meseguer. “Security Policies and Security Models.” In Pro-
ceedings of the IEEE Symposium on Security and Privacy, 1982, pages 11–20.

GRA71 Graham, G. Scott and Peter J. Denning. “Protection — Principles and Practice.” In Pro-
ceedings of the Fall Joint Computer Conference. American Federation of Information Pro-
cessing Societies (AFIPS), November 1971, pages 417–429.

HAL08 Halderman, J. Alex, Eric Rescorla, Hovav Shacham, and David Wagner. “You Go to
Elections with the Voting System You Have: Stop-Gap Mitigations for Deployed Vot-
ing Systems.” In Proceedings of the Conference on Electronic Voting Technology (EVT’08).
USENIX Association, Berkeley, California, 2008.

HAM06 Hamlen, Kevin W., Greg Morrisett, and Fred B. Schneider. “Computability Classes for
Enforcement Mechanisms.” ACM Transactions on Programming Languages and Systems
(TOPLAS), volume 28 (1), January 2006: pages 175–205.

HAR76 Harrison, Michael, Walter Ruzzo, and Jeffery Ullman. “Protection in Operating Sys-
tems.” Communications of the ACM, volume 19 (8), August 1976: pages 461–471.

HER06 Herzog, Pete. Open-Source Security Testing Methodology Manual. Institute for Security
and Open Methodologies (ISECOM), New York, osstmm 2.2 edition, December 2006.

HOW97 Howard, John D. An Analysis of Security Incidents on the Internet 1989–1995. Ph.D.
Dissertation, Department of Engineering and Public Policy, Carnegie Mellon University,
Pittsburgh, Pennsylvania, April 1997.

HOW05 Howard, Michael, Jon Pincus, and Jeannette M. Wing. “Measuring Relative Attack Sur-
faces.” In Computer Security in the 21st Century. Springer, March 2005, pages 109–137.

142

HUL94 Huling, George. “Introduction to Use of Formal Methods in Software and Hardware.” In
Conference Record of Wescon’94 Idea/Microelectronics, September 1994, pages 48–52.

IRV07 Irvine, Cynthia E. and Karl Levitt. “Trusted Hardware: Can it be Trustworthy?” In Pro-
ceedings of the 44th annual Design Automation Conference (DAC), 2007, pages 1–4.

JAJ97A Jajodia, Sushil, Pierangela Samarati, and Venkatramanan S. Subrahmanian. “A Logical
Language for Expressing Authorizations.” In Proceedings of the 1997 IEEE Symposium
on Security and Privacy, 1997, pages 31–42.

JAJ97B Jajodia, Sushil, Pierangela Samarati, Venkatramanan S. Subrahmanian, and Eliza
Bertino. “A Unified Framework for Enforcing Multiple Access Control Policies.” In Pro-
ceedings of the 1997 ACM SIGMOD International Conference on Management of Data.
ACM Special Interest Group on Management of Data (SIGMOD), 1997, pages 474–485.

JEC03 Jech, Thomas. Set Theory. Springer Monographs in Mathematics. Springer, Berlin, third
millennium edition, 2003.

JHA02 Jha, Somesh, Oleg Sheyner, and Jeannette M. Wing. “Two Formal Analyses of Attack
Graphs.” In Proceedings of the 15th IEEE Computer Security Foundations Workshop
(CSFW), June 2002, pages 49–63.

JØ07 Jøsang, Audun, Bander AlFayyadh, Tyrone Grandison, Mohammed AlZomai, and Judith
McNamara. “Security Usability Principles for Vulnerability Analysis and Risk Assess-
ment.” In Proceedings of the Twenty-Third Annual Computer Security Applications Con-
ference (ACSAC), December 2007, pages 269–278.

JON76 Jones, Anita K., Richard J. Lipton, and Lawrence Snyder. “A Linear Time Algorithm for
Deciding Security.” In Proceedings of the 17th Annual Symposium on Foundations of
Computer Science (SFCS), October 1976, pages 33–41.

KAR72 Karp, Richard M. “Reducibility Among Combinatorial Problems.” In Raymond E. Miller
and James W. Thatcher (Editors) Complexity of Computer Computations. Plenum Press,
New York, March 1972, pages 85–103.

KLE07 Kleiner, Eldar and Tom C. Newcomb. “On the Decidability of the Safety Problem for
Access Control Policies.” Electronic Notes in Theoretical Computer Science, volume 185,
2007: pages 107–120.

KLE09 Klein, Gerwin, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “seL4: Formal Verification of an OS Kernel.”
In Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP).
ACM, October 2009, pages 207–220.

KRS98 Krsul, Ivan Victor. Software Vulnerability Analysis. Ph.D. Dissertation, Department of
Computer Sciences, Purdue University, May 1998. COAST Technical Report 98-09.

LAM71 Lampson, Butler W. “Protection.” In Proceedings of the Fifth Princeton Symposium on
Information Sciences and Systems, March 1971, pages 437–443. Reprinted in Operating
Systems Review, volume 8 (1), January 1974: pages 18–24.

143

LAN81 Landwehr, Carl. “Formal Models for Computer Security.” ACM Computing Surveys,
volume 13 (3), September 1981: pages 247–278.

LAN94 Landwehr, Carl E., Alan R. Bull, John P. McDermott, and William S. Choi. “A Taxonomy of
Computer Program Security Flaws.” ACM Computing Surveys, volume 26 (3), September
1994: pages 211–254.

LI05 Li, Ninghui and Mahesh V. Tripunitara. “On Safety in Discretionary Access Control.”
In Proceedings of the 2005 IEEE Symposium on Security and Privacy, May 2005, pages
96–109.

LIG09 Ligatti, Jay, Lujo Bauer, and David Walker. “Run-Time Enforcement of Nonsafety Poli-
cies.” ACM Transactions on Information and System Security (TISSEC), volume 12 (3),
January 2009: pages 1–41.

LIN75 Linde, Richard R. “Operating System Penetration.” In Proceedings of the National Com-
puter Conference And Exposition. American Federation of Information Processing Soci-
eties (AFIPS), May 1975, pages 361–368.

MCP08 McPherson, Amanda, Brian Proffitt, and Ron Hale-Evans. “Estimating the Total De-
velopment Cost of a Linux Distribution.” Whitepaper, The Linux Foundation, http:
//www.linuxfoundation.org/publications/estimatinglinux.php, October 2008.

MEE05 Meenakshi, Balasubramanian. “Formal Verification.” Resonance, volume 10 (5), May
2005: pages 26–38.

NEU78 Neumann, Peter. Computer Security Evaluation, volume 47 of National Computer Con-
ference, AFIPS Conference Proceedings, 1978, pages 1087–1095.

OLI06 de Oliveira, Daniela A. S., Jedidiah R. Crandall, Gary Wassermann, S. Felix Wu, Zhen-
dong Su, and Frederic T. Chong. “ExecRecorder: VM-based Full-System Replay for At-
tack Analysis and System Recovery.” In Proceedings of the 1st Workshop on Architectural
and System Support for Improving Software Dependability (ASID). ACM, New York, New
York, October 2006, pages 66–71.

OPE06 Open Information Systems Security Group (OSISSG). Information Systems Security As-
sessment Framework (ISSAF), draft 0.2 edition, April 2006.

OST84 Ostrand, Thomas J. and Elaine J. Weyuker. “Collecting and Categorizing Software Er-
ror Data in an Industrial Environment.” Journal of Systems and Software, volume 4 (4),
November 1984: pages 289–300.

OWA09 Open Web Application Security Project (OWASP), http://www.owasp.org/index.php/
Category:Vulnerability. Category:Vulnerability, November 2009. (Last Accessed).

PEI07A Peisert, Sean and Matt Bishop. “How to Design Computer Security Experiments.” In
Proceedings of the Fifth World Conference on Information Security Education (WISE),
June 2007, pages 141–148.

PEI07B Peisert, Sean, Matt Bishop, Sidney Karin, and Keith Marzullo. “Analysis of Computer
Intrusions Using Sequences of Function Calls.” IEEE Transactions on Dependable and
Secure Computing (TDSC), volume 4 (2), April–June 2007: pages 137–150.

http://www.linuxfoundation.org/publications/estimatinglinux.php
http://www.linuxfoundation.org/publications/estimatinglinux.php
http://www.owasp.org/index.php/Category:Vulnerability
http://www.owasp.org/index.php/Category:Vulnerability

144

PEI07C Peisert, Sean P. A Model of Forensic Analysis Using Goal-Oriented Logging. Ph.D. Disser-
tation, Department of Computer Science and Engineering, University of California, San
Diego, March 2007.

RAM98 Ramakrishnan, Coimbatore R. and R. Sekar. “Model-Based Vulnerability Analysis of
Computer Systems.” In Proceedings of the 2nd International Workshop on Verification,
Model Checking and Abstract Interpretation (VMCAI), September 1998.

RAM02 Ramakrishnan, Coimbatore R. and R. Sekar. “Model-Based Analysis of Configuration
Vulnerabilities.” Journal of Computer Security (JCS), volume 10 (1-2), January 2002:
pages 189–209.

ROC89 Rochlis, Jon A. and Mark W. Eichin. “With Microscope and Tweezers: The Worm from
MIT’s Perspective.” Communications of the ACM, volume 32 (6), June 1989: pages 689–
698.

ROS07 Rosen, Kenneth H. Discrete Mathematics and Its Applications. McGraw-Hill, New York,
6th edition, 2007.

RUS92 Rushby, John M. “Noninterference, Transitivity, and Channel-Control Security Policies.”
Technical Report CSL-92-02, Computer Science Laboratory, SRI International, Menlo
Park, California, December 1992.

SAK06 Sakaki, Hiroshi, Kazuo Yanoo, and Ryuichi Ogawa. A Model-Based Method for Security
Configuration Verification in Advances in Information and Computer Security, volume
4266/2006 of Lecture Notes in Computer Science. Springer, Berlin, October 2006, pages
60–75.

SCH99 Schneider, Fred B. (Editor) Trust in Cyberspace. National Academies Press, 1999.

SCH00 Schneider, Fred B. “Enforceable Security Policies.” ACM Transactions on Information
and System Security (TISSEC), volume 3 (1), February 2000: pages 30–50.

SCH05 Schwarz, Benjamin, Hao Chen, David Wagner, Geoff Morrison, Jacob West, Jeremy Lin,
and Wei Tu. “Model Checking an Entire Linux Distribution for Security Violations.” In
Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC), De-
cember 2005.

SIM08 Simidchieva, Borislava I., Matthew S. Marzilli, Lori A. Clarke, and Leon J. Osterweil.
“Specifying and Verifying Requirements for Election Processes.” In Proceedings of the
International Conference on Digital Government Research. Digital Government Society
of North America, 2008.

SIN08 Sinclair, Sara and Sean W. Smith. Preventative Directions For Insider Threat Mitigation
Via Access Control in Insider Attack and Cyber Security: Beyond the Hacker, volume 39 of
Advances in Information Security. Springer, 2008, pages 165–194.

SIP97 Sipser, Michael. Introduction to the Theory of Computation. PWS Publishing Company,
1997.

SNY77 Snyder, Lawrence. “On the Synthesis and Analysis of Protection Systems.” ACM SIGOPS
Operating Systems Review, volume 11 (5), November 1977: pages 141–150.

145

STE91 Sterne, Daniel F. “On the Buzzword ‘Security Policy’.” In Proceedings of the IEEE Com-
puter Society Symposium on Research in Security and Privacy. ACM Special Interest
Group on Management of Data (SIGMOD), 1991, pages 219–230.

THO84 Thompson, Ken. “Reflections on Trusting Trust.” Communications of the ACM, vol-
ume 27 (8), August 1984: pages 761–763.

VAU01 Vaught, Robert L. Set Theory: An Introduction. Birkhäuser, 2nd edition, 2001.

VEN97 Venkatesan, Ramkuniar M. and Sourav Bhattacharya. “Threat-Adaptive Security Policy.”
In Proceedings of the IEEE International Performance, Computing, and Communications
Conference (IPCCC), February 1997, pages 525–531.

VVS07 “Voluntary Voting System Guidelines (VVSG) Recommendations to the Election Assis-
tance Commission (EAC).” Prepared at the Direction of the Technical Guidelines Devel-
opment Committee (TGDC), August 2007.

WEB98 Weber, Daniel J. A Taxonomy of Computer Intrusions. Master’s Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
June 1998.

WEI95 Weissman, Clark. “Security Penetration Testing Guideline.” NRL Technical Memoran-
dum 5540:082A, chapter 10 of the Handbook for the Computer Security Certification of
Trusted Systems. Naval Research Laboratory, Washington, D.C., January 1995.

WHA05 Whalen, Sean, Sophie Engle, and Matt Bishop. “Protocol Vulnerability Analysis.” Tech-
nical Report CSE-2005-04, Department of Computer Science, University of California,
Davis, 2005.

WHI99 Whitten, Alma and J. Doug Tygar. “Why Johnny Can’t Encrypt: A Usability Evaluation of
PGP 5.0.” In Proceedings of the 8th USENIX Security Symposium, 1999.

WIN98 Wing, Jeannette M. “A Symbiotic Relationship Between Formal Methods and Security.”
In Computer Security, Dependability and Assurance: From Needs to Solutions, November
1998, pages 26–38.

WOO04 Wool, Avishai. “A Quantitative Study of Firewall Configuration Errors.” Computer, vol-
ume 37 (6), June 2004: pages 62–67.

YUA06 Yuan, Lihua, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Mo-
hapatra. “FIREMAN: A Toolkit for FIREwall Modeling and ANalysis.” In Proceedings of
the 2006 IEEE Symposium on Security and Privacy, June 2006, pages 199–213.

ZHA97 Zhang, Kan. “A Theory for System Security.” In Proceedings of the 10th Computer Security
Foundations Workshop (CSFW), June 1997, pages 148–155.

146

Terminology Index

Symbols
ETM 120
PARTIAL(M , w , n) 28, 117
RTSECURETM 123
SECURETM 120
TRACE(M , w) 28, 115
UNSECURETM 122
VALID (M) 28, 118

A
absolute vulnerability 57
accepting configuration 26
access control matrix 8
ambiguity 41
approximation algorithm 28

B
basic characteristic set

79, 130, 133
basic symptom set 79
buffer overflow vulnerability

13
direct data 83, 134
direct executable 83, 133
indirect data 83, 134
indirect executable 83, 134

C
characteristic 12, 75

characteristic class 84
characteristic oracle 76
characteristic set

basic characteristic set
79, 130, 133

universal characteristic
set 78

master characteristic tree
85

properties
completeness 78

soundness 77
characteristic class 84
characteristic oracle 76
child node 30
Church-Turing thesis 26
class NP 27
class P 27
classification tree

master classification tree 85
vulnerability classification

tree 85
closed policy 24
co-recursively enumerable

language 27
completeness 24, 41, 78
complexity

approximation algorithm
28

class NP 27
class P 27
intractable 28
NP-complete 27

computable function 26
computation history 28
computation trace see trace
condition

see policy condition
or precondition

conditional policy event 38
configuration 26

accepting configuration 26
halting configuration 26
rejecting configuration 26
start configuration 26
valid configuration 28, 118

VALID (M) 28, 118
configuration violation 55
configuration vulnerability 55
configured oracle 49

configured policy 49
conflict see policy conflict
conflict-free 40
correctness 24, 45

D
decidable language 27
decider Turing machine 26
decision problems

emptiness problem 120
ETM 120

safety problem 9
useless state problem

useless state 34
direct data buffer overflow

83, 134
direct executable buffer over-

flow 83, 133

E
emptiness problem 120
enumerator 26
equivocal violation 52

F
feasible oracle 47
feasible policy 47
formal language 26

co-recursively enumerable
language 27

decidable language 27
recursively enumerable lan-

guage 27
undecidable language 27

G
global policy event space 39
graph 30

of a function 30

147

H
halting configuration 26
high-level policy language 23
hybrid policy 24

I
ideal oracle 46
ideal policy 46
implementation violation

56, 69
implementation vulnerability

56, 70
implementation vulnerability

abstraction 80
implementation vulnerability

equivalence class 80
independence see soundness
indirect data buffer overflow

83, 134
indirect executable buffer

overflow 83, 134
indirect violation 52
inherent violation 54
inherent vulnerability 54
insider threat 14
instantaneous description

see configuration
instantiated oracle 50
instantiated policy 50
internal node 30
intractable 28
IVAB

see implementation vul-
nerability abstraction

IVEC
see implementation vul-

nerability equivalence class

L
labeled node 30
language see formal language
leaf node 30
linear bounded automata 111
low-level policy language 23

M
machine see Turing machine
mapping reducible 27
master characteristic tree 85
master classification tree 85

master symptom tree 85
minimal set cover 29
mixed policy see hybrid policy

N
noninterference 17
NP-complete 27

O
open policy 23

P
parent node 30
partial trace 28, 117
perfect knowledge assump-

tion 70
policy 23, 34, 42

closed policy 24
hybrid policy 24
mixed policy

see hybrid policy
open policy 23

policy condition 42
policy condition set 42
state condition 42
tape condition 43

policy condition set 42
policy conflict 40
policy decision 23, 39
policy event 23, 37

conditional policy event 38
policy hierarchy

configured policy 49
feasible policy 47
ideal policy 46
instantiated policy 50

policy language 23, 37
high-level policy language

23
low-level policy language

23
policy oracle 45

configured oracle 49
feasible oracle 47
ideal oracle 46
instantiated oracle 50

policy properties
ambiguity 41
completeness 24, 41

conflict-free 40
correctness 24, 45
preciseness 24
precision 41

policy response 39
policy set 40
policy statement 23, 40
policy violation 23, 51

configuration violation 55
equivocal violation 52
implementation violation

56, 69
indirect violation 52
inherent violation 54
system violation set 74
unequivocal violation 51
universal violation set 75

preciseness 24
precision 41
precondition 69

system precondition set 74
universal precondition set

75

R
real-time security 69, 123
recursively enumerable lan-

guage 27
rejecting configuration 26
representative system set 72
root node 30

S
secure see security
security 34, 120

SECURETM 120
non-security 122

UNSECURETM 122
real-time security 69, 123

RTSECURETM 123
security mechanism 23
security policy see policy
set cover 29

minimal set cover 29
set covering problem 29

set covering problem 29
set-builder notation 29
sibling node 30
soundness 77

148

start configuration 26
state condition 42
symmetric difference 29
symptom 13, 76

master symptom tree 85
properties

completeness 78
soundness 77

symptom class 84
symptom oracle 77
symptom set

basic symptom set 79
universal symptom set 78

symptom class 84
symptom oracle 77
system see Turing machine

representative system set
72

system oracle 73
system precondition set 74
system violation set 74

T
tape condition 43

total Turing machine
see decider TM

trace 28, 115
TRACE(M , w) 28, 115
partial trace 28, 117

PARTIAL(M , w , n)
28, 117

tree 30
child node 30
internal node 30
labeled node 30
leaf node 30
parent node 30
root node 30
sibling node 30
unordered tree 30

Turing machine 25
Church-Turing thesis 26
computable function 26
decider Turing machine 26
enumerator 26
linear bounded automata

111
universal Turing machine

26

U
unambiguity see ambiguity
undecidable language 27
unequivocal violation 51
universal characteristic set 78
universal precondition set 75
universal symptom set 78
universal Turing machine 26
universal violation set 75
unordered tree 30
useless state 34

V
valid configuration 28, 118
vulnerability 53

absolute vulnerability 57
configuration vulnerability

55
implementation vulnerabil-

ity 56, 70
abstraction 80
equivalence class 80

inherent vulnerability 54
vulnerability classification

tree 85

	Abstract
	Table of Contents
	Introduction
	Motivation
	Analysis Scope
	Objectives
	Approach
	Organization

	Background
	Foundations
	Access Control Matrix (ACM) Model
	Harrison-Ruzzo-Ullman (HRU) Model
	Take-Grant Protection Model

	Prior Work
	Unifying Policy Hierarchy
	Vulnerability Analysis
	Buffer Overflow Characteristics
	Protocol Exploit Classification
	Insider Threat Analysis
	Early Iterations

	Related Work
	Security Policy
	Theoretical Results
	Vulnerability Classification
	Vulnerability Analysis

	Terminology
	Security Policy
	Policy Properties
	Turing Machines
	Computability
	Complexity
	Computation Traces
	Set Notation
	Graph Notation

	Security Policy
	Introduction
	Policy-Based Approach
	Levels of Security Policy
	Intention versus Implementation
	Policy as a Partition
	Policy as a Language

	Terminology
	Policy Events
	Policy Responses
	Policy Statements and Sets
	Policy Properties
	Policy Conditions

	Vulnerability Hierarchy
	Introduction
	Policy Hierarchy
	Policy Oracle
	Ideal Oracle
	Feasible Oracle
	Configured Oracle
	Instantiated Oracle

	Vulnerability Hierarchy
	Policy Violations
	Inherent Vulnerabilities
	Configuration Vulnerabilities
	Implementation Vulnerabilities
	Absolute Vulnerabilities

	Case Study: Insider Threat
	Approach
	Phase 1: Preparation
	Phase 2: Inherent Vulnerability Analysis
	Phase 3: Absolute Vulnerability Analysis

	Prior Work
	Summary

	Vulnerability Classification
	Introduction
	Terminology
	Implementation Vulnerabilities
	Perfect Knowledge Assumption
	Representative System Set
	System Sets
	Universal Sets

	Characteristic-Based Abstraction
	Characteristics
	Symptoms
	Properties
	Universal Sets
	Basic Sets
	Vulnerabilities
	Buffer Overflow Example

	Hierarchical Classification
	Classification Components
	Classification Trees

	Prior Work
	Summary

	Vulnerability Analysis
	Introduction
	Analysis Framework
	Phase 1: Preparation
	Phase 2: Analysis
	Phase 3: Mitigation

	Phase 1: Preparation
	Step 1: Define Global Policy Event Space
	Step 2: Approximate Configured Policy Oracle
	Phase 1 Summary

	Phase 2: Analysis
	Step 1: Instantiated Oracle Analysis
	Step 2: Characteristic Analysis
	Step 3: Environment Analysis
	Step 4: Vulnerability Analysis
	Phase 2 Summary

	Phase 3: Mitigation
	Step 1: Characteristic Identification
	Step 2: Characteristic Mitigation
	Step 3: Vulnerability Mitigation
	Phase 3 Summary

	Analysis Example
	Phase 1: Preparation
	Phase 2: Analysis
	Phase 3: Mitigation
	Example Summary

	Summary

	Conclusion
	Summary
	Contributions
	Vulnerability Hierarchy
	Vulnerability Model
	Vulnerability Classification
	Vulnerability Analysis

	Future Work
	Theoretical Directions
	Vulnerability Database
	Extended Case Study

	Vulnerability Model
	Introduction
	Terminology
	Computation Trace
	Partial Trace
	Valid Configurations

	Security Problems
	System Security
	System Non-Security
	Real-Time Security

	Discussion
	Summary

	Discussion
	Approximating Access Control Matrix Models
	Global Policy Event Space
	Configured Oracle
	Other Access Attributes

	Basic Set Formalization
	Minimal Set Cover
	Minimal Superset Cover

	Buffer Overflow Characteristics
	Original Characteristics
	Revised Characteristics

	Bibliography
	Terminology Index

